179 research outputs found

    The Behavior of Kasner Cosmologies with Induced Matter

    Get PDF
    We extend the induced matter model, previously applied to a variety of isotropic cases, to a generalization of Bianchi type-I anisotropic cosmologies. The induced matter model is a 5D Kaluza-Klein approach in which assumptions of compactness are relaxed for the fifth coordinate, leading to extra geometric terms. One interpretation of these extra terms is to identify them as an ``induced matter'' contribution to the stress-energy tensor. In similar spirit, we construct a five dimensional metric in which the spatial slices possess Bianchi type-I geometry. We find a set of solutions for the five dimensional Einstein equations, and determine the pressure and density of induced matter. We comment on the long-term dynamics of the model, showing that the assumption of positive density leads to the contraction over time of the fifth scale factor.Comment: 14 page

    Kovalevski exponents and integrability properties in class A homogeneous cosmological models

    Get PDF
    Qualitative approach to homogeneous anisotropic Bianchi class A models in terms of dynamical systems reveals a hierarchy of invariant manifolds. By calculating the Kovalevski Exponents according to Adler - van Moerbecke method we discuss how algebraic integrability property is distributed in this class of models. In particular we find that algebraic nonintegrability of vacuum Bianchi VII_0 model is inherited by more general Bianchi VIII and Bianchi IX vacuum types. Matter terms (cosmological constant, dust and radiation) in the Einstein equations typically generate irrational or complex Kovalevski exponents in class A homogeneous models thus introducing an element of nonintegrability even though the respective vacuum models are integrable.Comment: arxiv version is already officia

    Supergravity Black Holes and Billiards and Liouville integrable structure of dual Borel algebras

    Full text link
    In this paper we show that the supergravity equations describing both cosmic billiards and a large class of black-holes are, generically, both Liouville integrable as a consequence of the same universal mechanism. This latter is provided by the Liouville integrable Poissonian structure existing on the dual Borel algebra B_N of the simple Lie algebra A_{N-1}. As a by product we derive the explicit integration algorithm associated with all symmetric spaces U/H^{*} relevant to the description of time-like and space-like p-branes. The most important consequence of our approach is the explicit construction of a complete set of conserved involutive hamiltonians h_{\alpha} that are responsible for integrability and provide a new tool to classify flows and orbits. We believe that these will prove a very important new tool in the analysis of supergravity black holes and billiards.Comment: 48 pages, 7 figures, LaTex; V1: misprints corrected, two references adde

    The no-defect conjecture in cosmic crystallography

    Full text link
    The topology of space is usually assumed simply connected, but could be multi-connected. We review in the latter case the possibility that topological defects arising at high energy phase transitions might still be present and find that either they are very unlikely to form at all, or space is effectively simply connected on scales up to the horizon size.Comment: LaTeX-REVTeX, 5 pages and 2 figures uuencoded, submitted to Phys. Rev. Let

    Bianchi type IX asymptotical behaviours with a massive scalar field: chaos strikes back

    Full text link
    We use numerical integrations to study the asymptotical behaviour of a homogeneous but anisotropic Bianchi type IX model in General Relativity with a massive scalar field. As it is well known, for a Brans-Dicke theory, the asymptotical behaviour of the metric functions is ruled only by the Brans-Dicke coupling constant with respect to the value -3/2. In this paper we examine if such a condition still exists with a massive scalar field. We also show that, contrary to what occurs for a massless scalar field, the singularity oscillatory approach may exist in presence of a massive scalar field having a positive energy density.Comment: 31 pages, 7 figures (low resolution

    O(d,d)-invariance in inhomogeneous string cosmologies with perfect fluid

    Full text link
    In the first part of the present paper, we show that O(d,d)-invariance usually known in a homogeneous cosmological background written in terms of proper time can be extended to backgrounds depending on one or several coordinates (which may be any space-like or time-like coordinate(s)). In all cases, the presence of a perfect fluid is taken into account and the equivalent duality transformation in Einstein frame is explicitly given. In the second part, we present several concrete applications to some four-dimensional metrics, including inhomogeneous ones, which illustrate the different duality transformations discussed in the first part. Note that most of the dual solutions given here do not seem to be known in the literature.Comment: 25 pages, no figures, Latex. Accepted for publication in General Relativity and Gravitatio

    Kasner and Mixmaster behavior in universes with equation of state w \ge 1

    Full text link
    We consider cosmological models with a scalar field with equation of state w1w\ge 1 that contract towards a big crunch singularity, as in recent cyclic and ekpyrotic scenarios. We show that chaotic mixmaster oscillations due to anisotropy and curvature are suppressed, and the contraction is described by a homogeneous and isotropic Friedmann equation if w>1w>1. We generalize the results to theories where the scalar field couples to p-forms and show that there exists a finite value of ww, depending on the p-forms, such that chaotic oscillations are suppressed. We show that Z2Z_2 orbifold compactification also contributes to suppressing chaotic behavior. In particular, chaos is avoided in contracting heterotic M-theory models if w>1w>1 at the crunch.Comment: 25 pages, 2 figures, minor changes, references adde

    Hyperbolic billiards of pure D=4 supergravities

    Full text link
    We compute the billiards that emerge in the Belinskii-Khalatnikov-Lifshitz (BKL) limit for all pure supergravities in D=4 spacetime dimensions, as well as for D=4, N=4 supergravities coupled to k (N=4) Maxwell supermultiplets. We find that just as for the cases N=0 and N=8 investigated previously, these billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac-Moody algebras. Hence, the dynamics is chaotic in the BKL limit. A new feature arises, however, which is that the relevant Kac-Moody algebra can be the Lorentzian extension of a twisted affine Kac-Moody algebra, while the N=0 and N=8 cases are untwisted. This occurs for N=5, N=3 and N=2. An understanding of this property is provided by showing that the data relevant for determining the billiards are the restricted root system and the maximal split subalgebra of the finite-dimensional real symmetry algebra characterizing the toroidal reduction to D=3 spacetime dimensions. To summarize: split symmetry controls chaos.Comment: 21 page

    Spacelike Singularities and Hidden Symmetries of Gravity

    Get PDF
    We review the intimate connection between (super-)gravity close to a spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added. Published versio
    corecore