400 research outputs found

    Cluster-Growth in Freely Cooling Granular Media

    Full text link
    When dissipative particles are left alone, their fluctuation energy decays due to collisional interactions, clusters build up and grow with time until the system size is reached. When the effective dissipation is strong enough, this may lead to the `inelastic collapse', i.e. the divergence of the collision frequency of some particles. The cluster growth is an interesting physical phenomenon, whereas the inelastic collapse is an intrinsic effect of the inelastic hard sphere (IHS) model used to study the cluster growth - involving only a negligible number of particles in the system. Here, we extend the IHS model by introducing an elastic contact energy and the related contact duration t_c. This avoids the inelastic collapse and allows to examine the long-time behavior of the system. For a quantitative description of the cluster growth, we propose a burning - like algorithm in continuous space, that readily identifies all particles that belong to the same cluster. The criterion for this is here chosen to be only the particle distance. With this method we identify three regimes of behavior. First, for short times a homogeneous cooling state (HCS) exists, where a mean-field theory works nicely, and the clusters are tiny and grow very slowly. Second, at a certain time which depends on the system's properties, cluster growth starts and the clusters increase in size and mass until, in the third regime, the system size is reached and most of the particles are collected in one huge cluster.Comment: 16 pages, 21 figures. Chaos 9(3) (in press, 1999

    The energy flux into a fluidized granular medium at a vibrating wall

    Full text link
    We study the power input of a vibrating wall into a fluidized granular medium, using event driven simulations of a model granular system. The system consists of inelastic hard disks contained between a stationary and a vibrating elastic wall, in the absence of gravity. Two scaling relations for the power input are found, both involving the pressure. The transition between the two occurs when waves generated at the moving wall can propagate across the system. Choosing an appropriate waveform for the vibrating wall removes one of these scalings and renders the second very simple.Comment: 5 pages, revtex, 7 postscript figure

    Phase transition in inelastic disks

    Full text link
    This letter investigates the molecular dynamics of inelastic disks without external forcing. By introducing a new observation frame with a rescaled time, we observe the virtual steady states converted from asymptotic energy dissipation processes. System behavior in the thermodynamic limit is carefully investigated. It is found that a phase transition with symmetry breaking occurs when the magnitude of dissipation is greater than a critical value.Comment: 9 pages, 6 figure

    Dynamics of Freely Cooling Granular Gases

    Full text link
    We study dynamics of freely cooling granular gases in two-dimensions using large-scale molecular dynamics simulations. We find that for dilute systems the typical kinetic energy decays algebraically with time, E(t) ~ t^{-1}, in the long time limit. Asymptotically, velocity statistics are characterized by a universal Gaussian distribution, in contrast with the exponential high-energy tails characterizing the early homogeneous regime. We show that in the late clustering regime particles move coherently as typical local velocity fluctuations, Delta v, are small compared with the typical velocity, Delta v/v ~ t^{-1/4}. Furthermore, locally averaged shear modes dominate over acoustic modes. The small thermal velocity fluctuations suggest that the system can be heuristically described by Burgers-like equations.Comment: 4 pages, 5 figure

    Spatial Correlations in Compressible Granular Flows

    Get PDF
    For a freely evolving granular fluid, the buildup of spatial correlations in density and flow field is described using fluctuating hydrodynamics. The theory for incompressible flows is extended to the general, compressible case, including longitudinal velocity and density fluctuations, and yields qualitatively different results for long range correlations. The structure factor of density fluctuations shows a maximum at finite wavenumber, shifting in time to smaller wavenumbers and corresponding to a growing correlation length. It agrees well with two-dimensional molecular dynamics simulations.Comment: 12 pages, Latex, 3 figure

    Towards a continuum theory of clustering in a freely cooling inelastic gas

    Full text link
    We performed molecular dynamics simulations to investigate the clustering instability of a freely cooling dilute gas of inelastically colliding disks in a quasi-one-dimensional setting. We observe that, as the gas cools, the shear stress becomes negligibly small, and the gas flows by inertia only. Finite-time singularities, intrinsic in such a flow, are arrested only when close-packed clusters are formed. We observe that the late-time dynamics of this system are describable by the Burgers equation with vanishing viscosity, and predict the long-time coarsening behavior.Comment: 7 pages, 5 eps figures, to appear in Europhys. Let

    Deviations from plastic barriers in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} thin films

    Full text link
    Resistive transitions of an epitaxial Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} thin film were measured in various magnetic fields (HcH\parallel c), ranging from 0 to 22.0 T. Rounded curvatures of low resistivity tails are observed in Arrhenius plot and considered to relate to deviations from plastic barriers. In order to characterize these deviations, an empirical barrier form is developed, which is found to be in good agreement with experimental data and coincide with the plastic barrier form in a limited magnetic field range. Using the plastic barrier predictions and the empirical barrier form, we successfully explain the observed deviations.Comment: 5 pages, 6 figures; PRB 71, 052502 (2005

    Fast diffusion of a Lennard-Jones cluster on a crystalline surface

    Full text link
    We present a Molecular Dynamics study of large Lennard-Jones clusters evolving on a crystalline surface. The static and the dynamic properties of the cluster are described. We find that large clusters can diffuse rapidly, as experimentally observed. The role of the mismatch between the lattice parameters of the cluster and the substrate is emphasized to explain the diffusion of the cluster. This diffusion can be described as a Brownian motion induced by the vibrationnal coupling to the substrate, a mechanism that has not been previously considered for cluster diffusion.Comment: latex, 5 pages with figure

    Influence of Canal Geometry and Dynamics on Controllability

    Get PDF
    This paper presents the results of the Task Committee on Canal Automation Algorithms with regard to the influence of canal properties on the controllability of irrigation canals. While the control provided by individual algorithms was not evaluated, studies were performed to illustrate inherent hydraulic limitations—the inability of canal pools to recover rapidly from disturbances or flow perturbations. Studies were performed in nondimensional form to develop a better understanding of how pool properties influence pool response. Three such studies were performed. First, nondimensional backwater curves were developed for a range of canal conditions. The second study involved the propagation of waves initiated at the upstream end of a canal pool, as this is influenced by downstream boundary conditions. Finally, the response of pools to downstream withdrawals was examined in terms of their sluggish recovery even when the correct flow change is applied upstream. These results will help in understanding how canal properties influence the ability of operators to effectively control a canal either manually or automatically, and should influence future design practices
    corecore