21 research outputs found

    Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Lactobacillus reuteri </it>harbors the genes responsible for glycerol utilization and vitamin B<sub>12 </sub>synthesis within a genetic island phylogenetically related to gamma-Proteobacteria. Within this island, resides a gene (<it>lreu_1750</it>) that based on its genomic context has been suggested to encode the regulatory protein PocR and presumably control the expression of the neighboring loci. However, this functional assignment is not fully supported by sequence homology, and hitherto, completely lacks experimental confirmation.</p> <p>Results</p> <p>In this contribution, we have overexpressed and inactivated the gene encoding the putative PocR in <it>L. reuteri</it>. The comparison of these strains provided metabolic and transcriptional evidence that this regulatory protein controls the expression of the operons encoding glycerol utilization and vitamin B<sub>12 </sub>synthesis.</p> <p>Conclusions</p> <p>We provide clear experimental evidence for assigning Lreu_1750 as PocR in <it>Lactobacillus reuteri</it>. Our genome-wide transcriptional analysis further identifies the loci contained in the PocR regulon. The findings reported here could be used to improve the production-yield of vitamin B<sub>12</sub>, 1,3-propanediol and reuterin, all industrially relevant compounds.</p

    Exploring Metabolic Pathway Reconstruction and Genome-Wide Expression Profiling in Lactobacillus reuteri to Define Functional Probiotic Features

    Get PDF
    The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these strains belong to two different clades, previously shown to differ with respect to antimicrobial production, biofilm formation, and immunomodulation. To explain possible mechanisms of survival in the host and probiosis, we completed a detailed genomic comparison of two breast milk–derived isolates representative of each group: an established probiotic strain (L. reuteri ATCC 55730) and a strain with promising probiotic features (L. reuteri ATCC PTA 6475). Transcriptomes of L. reuteri strains in different growth phases were monitored using strain-specific microarrays, and compared using a pan-metabolic model representing all known metabolic reactions present in these strains. Both strains contained candidate genes involved in the survival and persistence in the gut such as mucus-binding proteins and enzymes scavenging reactive oxygen species. A large operon predicted to encode the synthesis of an exopolysaccharide was identified in strain 55730. Both strains were predicted to produce health-promoting factors, including antimicrobial agents and vitamins (folate, vitamin B12). Additionally, a complete pathway for thiamine biosynthesis was predicted in strain 55730 for the first time in this species. Candidate genes responsible for immunomodulatory properties of each strain were identified by transcriptomic comparisons. The production of bioactive metabolites by human-derived probiotics may be predicted using metabolic modeling and transcriptomics. Such strategies may facilitate selection and optimization of probiotics for health promotion, disease prevention and amelioration

    Cyclopropane fatty acid synthase mutants of probiotic human-derived Lactobacillus reuteri are defective in TNF inhibition

    No full text
    Although commensal microbes have been shown to modulate host immune responses, many of the bacterial factors that mediate immune regulation remain unidentified. Select strains of human-derived Lactobacillus reuteri synthesize immunomodulins that potently inhibit production of the inflammatory cytokine TNF. In this study, genetic and genomic approaches were used to identify and investigate L. reuteri genes required for human TNF immunomodulatory activity. Analysis of membrane fatty acids from multiple L. reuteri strains cultured in MRS medium showed that only TNF inhibitory strains produced the cyclopropane fatty acid (CFA) lactobacillic acid. The enzyme cyclopropane fatty acid synthase is required for synthesis of CFAs such as lactobacillic acid, therefore the cfa gene was inactivated and supernatants from the cfa mutant strain were assayed for TNF inhibitory activity. We found that supernatants from the wild-type strain, but not the cfa mutant, suppressed TNF production by activated THP-1 human monocytoid cells. Although this suggested a direct role for lactobacillic acid in immunomodulation, purified lactobacillic acid did not suppress TNF at physiologically relevant concentrations. We further analyzed TNF inhibitory and TNF non-inhibitory strains under different growth conditions and found that lactobacillic acid production did not correlate with TNF inhibition. These results indicate that cfa indirectly contributed to L. reuteri immunomodulatory activity and suggest that other mechanisms, such as decreased membrane fluidity or altered expression of immunomodulins, result in the loss of TNF inhibitory activity. By increasing our understanding of immunomodulation by probiotic species, beneficial microbes can be rationally selected to alleviate intestinal inflammation

    Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?

    No full text
    It has become clear in recent years that the human intestinal microbiota plays an important role in maintaining health and thus is an attractive target for clinical interventions. Scientists and clinicians have become increasingly interested in assessing the ability of probiotics and prebiotics to enhance the nutritional status of malnourished children, pregnant women, the elderly, and individuals with non-communicable disease-associated malnutrition. A workshop was held by the International Scientific Association for Probiotics and Prebiotics (ISAPP), drawing on the knowledge of experts from industry, medicine, and academia, with the objective to assess the status of our understanding of the link between the microbiome and under-nutrition, specifically in relation to probiotic and prebiotic treatments for under-nourished individuals. These discussions led to four recommendations:   (1) The categories of malnourished individuals need to be differentiated To improve treatment outcomes, subjects should first be categorized based on the cause of malnutrition, additional health-concerns, differences in the gut microbiota, and sociological considerations. (2) Define a baseline "healthy" gut microbiota for each category Altered nutrient requirement (for example, in pregnancy and old age) and individual variation may change what constitutes a healthy gut microbiota for the individual. (3) Perform studies using model systems to test the effectiveness of potential probiotics and prebiotics against these specific categories These should illustrate how certain microbiota profiles can be altered, as members of different categories may respond differently to the same treatment. (4) Perform robust well-designed human studies with probiotics and/or prebiotics, with appropriate, defined primary outcomes and sample size These are critical to show efficacy and understand responder and non-responder outcomes. It is hoped that these recommendations will lead to new approaches that combat malnutrition. This report is the result of discussion during an expert workshop titled "How do the microbiota and probiotics and/or prebiotics influence poor nutritional status?" held during the 10th Meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) in Cork, Ireland from October 1-3, 2012. The complete list of workshop attendees is shown in Table 1

    Intestinal colonisation patterns in breastfed and formula-fed infants during the first 12 weeks of life reveal sequential microbiota signatures

    Get PDF
    The establishment of the infant gut microbiota is a highly dynamic process dependent on extrinsic and intrinsic factors. We characterized the faecal microbiota of 4 breastfed infants and 4 formula-fed infants at 17 consecutive time points during the first 12 weeks of life. Microbiota composition was analysed by a combination of 16S rRNA gene sequencing and quantitative PCR (qPCR). In this dataset, individuality was a major driver of microbiota composition (P = 0.002) and was more pronounced in breastfed infants. A developmental signature could be distinguished, characterized by sequential colonisation of i) intrauterine/vaginal birth associated taxa, ii) skin derived taxa and other typical early colonisers such as Streptococcus and Enterobacteriaceae, iii) domination of Bifidobacteriaceae, and iv) the appearance of adultlike taxa, particularly species associated with Blautia, Eggerthella, and the potential pathobiont Clostridium difficile. Low abundance of potential pathogens was detected by 16S profiling and confirmed by qPCR. Incidence and dominance of skin and breast milk associated microbes were increased in the gut microbiome of breastfed infants compared to formula-fed infants. The approaches in this study indicate that microbiota development of breastfed and formula-fed infants proceeds according to similar developmental stages with microbiota signatures that include stage-specific species.</p

    The intestinal microbiome, probiotics and prebiotics in neurogastroenterology

    No full text
    The brain-gut axis allows bidirectional communication between the central nervous system (CNS) and the enteric nervous system (ENS), linking emotional and cognitive centers of the brain with peripheral intestinal functions. Recent experimental work suggests that the gut microbiota have an impact on the brain-gut axis. A group of experts convened by the International Scientific Association for Probiotics and Prebiotics (ISAPP) discussed the role of gut bacteria on brain functions and the implications for probiotic and prebiotic science. The experts reviewed and discussed current available data on the role of gut microbiota on epithelial cell function, gastrointestinal motility, visceral sensitivity, perception and behavior. Data, mostly gathered from animal studies, suggest interactions of gut microbiota not only with the enteric nervous system but also with the central nervous system via neural, neuroendocrine, neuroimmune and humoral links. Microbial colonization impacts mammalian brain development in early life and subsequent adult behavior. These findings provide novel insights for improved understanding of the potential role of gut microbial communities on psychological disorders, most particularly in the field of psychological comorbidities associated with functional bowel disorders like irritable bowel syndrome (IBS) and should present new opportunity for interventions with pro- and prebiotics
    corecore