56 research outputs found

    S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage.: S100B is absent in SVZ GFAP expressing cells

    Get PDF
    International audienceDuring the postnatal development, astrocytic cells in the neocortex progressively lose their neural stem cell (NSC) potential, whereas this peculiar attribute is preserved in the adult subventricular zone (SVZ). To understand this fundamental difference, many reports suggest that adult subventricular GFAP-expressing cells might be maintained in immature developmental stage. Here, we show that S100B, a marker of glial cells, is absent from GFAP-expressing cells of the SVZ and that its onset of expression characterizes a terminal maturation stage of cortical astrocytic cells. Nevertheless, when cultured in vitro, SVZ astrocytic cells developed as S100B expressing cells, as do cortical astrocytic cells, suggesting that SVZ microenvironment represses S100B expression. Using transgenic s100b-EGFP cells, we then demonstrated that S100B expression coincides with the loss of neurosphere forming abilities of GFAP expressing cells. By doing grafting experiments with cells derived from beta-actin-GFP mice, we next found that S100B expression in astrocytic cells is repressed in the SVZ, but not in the striatal parenchyma. Furthermore, we showed that treatment with epidermal growth factor represses S100B expression in GFAP-expressing cells in vitro as well as in vivo. Altogether, our results indicate that the S100B expression defines a late developmental stage after which GFAP-expressing cells lose their NSC potential and suggest that S100B expression is repressed by adult SVZ microenvironment

    AHNAK interaction with the annexin 2/S100A10 complex regulates cell membrane cytoarchitecture

    Get PDF
    Remodelling of the plasma membrane cytoarchitecture is crucial for the regulation of epithelial cell adhesion and permeability. In Madin-Darby canine kidney cells, the protein AHNAK relocates from the cytosol to the cytosolic surface of the plasma membrane during the formation of cell–cell contacts and the development of epithelial polarity. This targeting is reversible and regulated by Ca2+-dependent cell–cell adhesion. At the plasma membrane, AHNAK associates as a multimeric complex with actin and the annexin 2/S100A10 complex. The S100A10 subunit serves to mediate the interaction between annexin 2 and the COOH-terminal regulatory domain of AHNAK. Down-regulation of both annexin 2 and S100A10 using an annexin 2–specific small interfering RNA inhibits the association of AHNAK with plasma membrane. In Madin-Darby canine kidney cells, down-regulation of AHNAK using AHNAK-specific small interfering RNA prevents cortical actin cytoskeleton reorganization required to support cell height. We propose that the interaction of AHNAK with the annexin 2/S100A10 regulates cortical actin cytoskeleton organization and cell membrane cytoarchitecture

    MAP6-F is a temperature sensor that directly binds to and protects microtubules from cold-induced depolymerization.: Microtubule stabilization by MAP6

    Get PDF
    International audienceMicrotubules are dynamic structures that present the peculiar characteristic to be ice-cold labile in vitro. In vivo, microtubules are protected from ice-cold induced depolymerization by the widely expressed MAP6/STOP family of proteins. However, the mechanism by which MAP6 stabilizes microtubules at 4 °C has not been identified. Moreover, the microtubule cold sensitivity and therefore the needs for microtubule stabilization in the wide range of temperatures between 4 and 37 °C are unknown. This is of importance as body temperatures of animals can drop during hibernation or torpor covering a large range of temperatures. Here, we show that in the absence of MAP6, microtubules in cells below 20 °C rapidly depolymerize in a temperature-dependent manner whereas they are stabilized in the presence of MAP6. We further show that in cells, MAP6-F binding to and stabilization of microtubules is temperature- dependent and very dynamic, suggesting a direct effect of the temperature on the formation of microtubule/MAP6 complex. We also demonstrate using purified proteins that MAP6-F binds directly to microtubules through its Mc domain. This binding is temperature-dependent and coincides with progressive conformational changes of the Mc domain as revealed by circular dichroism. Thus, MAP6 might serve as a temperature sensor adapting its conformation according to the temperature to maintain the cellular microtubule network in organisms exposed to temperature decrease

    Bmcc1s, a Novel Brain-Isoform of Bmcc1, Affects Cell Morphology by Regulating MAP6/STOP Functions

    Get PDF
    The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology

    Evaluating the yaws diagnostic gap: A survey to determine the capacity of and barriers to improving diagnostics in all yaws-endemic countries

    Get PDF
    BACKGROUND: Yaws, caused by Treponema pallidum subsp. pertenue, is a skin neglected tropical disease. It is targeted for eradication by 2030, primarily using mass drug administration (MDA) with azithromycin. Traditionally, diagnosis of yaws has relied on clinical examination and serological testing. However, these approaches have poor diagnostic performance. To achieve eradication, more accurate diagnostics are required to determine whether MDA should be initiated or continued as well as for post-elimination surveillance. Molecular tools will be crucial for detecting antimicrobial resistant cases, which have the potential to derail eradication efforts. In order to determine the feasibility of introducing novel, more accurate, diagnostics for yaws surveillance purposes, it is necessary to understand current in-country diagnostic capacity. This study therefore aimed to understand the current capacity of, and challenges to, improving diagnostics for yaws in all yaws-endemic countries worldwide. METHODOLOGY/ PRINCIPLE FINDINGS: An online survey was sent to all 15 yaws-endemic countries in July 2021. The survey asked about past prevalence estimates, the availability of different diagnostic tools, and perceived barriers to enhancing capacity. Fourteen countries responded to the survey, four of which did not have a current National Policy for yaws eradication in place. Over 95% of reported that yaws cases from the past five years had not been confirmed with serological or molecular tools, largely due to the limited supply of rapid serological tests. Only four countries reported having operational laboratories for molecular yaws diagnosis, with only one of these having a validated assay to detect azithromycin resistance. CONCLUSIONS AND SIGNIFICANCE: This study highlights the diagnostic capacity constraints across all respondent countries. Countries are in need of access to a sustainable supply of serological tests, and development of molecular testing facilities. Sufficient sustainable funding should be made available to ensure that appropriate diagnostic tools are available and utilised
    • 

    corecore