3,735 research outputs found
The Canada-France High-z Quasar Survey: 1.2mm Observations
We report 250 GHz (1.2 mm) observations of a sample of 20 QSOs at redshifts
5.8<z<6.5 from the the Canada-France High-z Quasar Survey (CFHQS), using the
Max-Planck Millimeter Bolometer (MAMBO) array at the IRAM 30-metre telescope. A
rms sensitivity <~ 0.6 mJy was achieved for 65% of the sample, and <~ 1.0 mJy
for 90%. Only one QSO, CFHQS J142952+544717, was robustly detected with
S_250GHz = 3.46 +/-0.52 mJy. This indicates that one of the most powerful known
starbursts at z~6 is associated with this radio loud QSO. On average, the other
CFHQS QSOs, which have a mean optical magnitude fainter than previously studied
SDSS samples of z~6 QSOs, have a mean 1.2 mm flux density = 0.41
+/-0.14 mJy; such a 2.9-sigma average detection is hardly meaningful. It would
correspond to ~ 0.94+/-0.32 10^12 Lo, and an average star formation
rate of a few 100's Mo/yr, depending on the IMF and a possible AGN contribution
to . This is consistent with previous findings of Wang et al. (2011) on
the far-infrared emission of z~6 QSOs and extends them toward optically fainter
sources.Comment: 6 pages, 1 figure, A&A in pres
Reynolds number and Shallow Depth Sloshing
The dependence on the Reynolds number of shallow depth sloshing ïŹows inside rectangular tanks subjected to forced harmonic motion is studied in this paper with weakly compressible SPH. We are interested in assessing the in ïŹuenceof viscous effects on the dynamics of shallow depth sloshing ïŹows by using an SPH solver and by comparing with a Navier-Stokes level-set solver results. The goal of trying to model these viscous ïŹows is compromised by the resolution requested due to their Reynolds number, if boundary layer effects are to be modeled. The convenience and feasibility of the implementation of free-slip and no-slip boundary conditions is also discusse
Ultrafast Acousto-Plasmonics in Gold Nanoparticles Superlattice
We report the investigation of the generation and detection of GHz coherent
acoustic phonons in plasmonic gold nanoparticles superlattices (NPS). The
experiments have been performed from an optical femtosecond pump-probe scheme
across the optical plasmon resonance of the superlattice. Our experiments allow
to estimate the collective elastic response (sound velocity) of the NPS as well
as an estimate of the nano-contact elastic stiffness. It appears that the
light-induced coherent acoustic phonon pulse has a typical in-depth spatial
extension of about 45 nm which is roughly 4 times the optical skin depth in
gold. The modeling of the transient optical reflectivity indicates that the
mechanism of phonon generation is achieved through ultrafast heating of the NPS
assisted by light excitation of the volume plasmon. These results demonstrate
how it is possible to map the photon-electron-phonon interaction in
subwavelength nanostructures
A trans-diagnostic perspective on obsessive-compulsive disorder
© Cambridge University Press 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Progress in understanding the underlying neurobiology of obsessive-compulsive disorder (OCD) has stalled in part because of the considerable problem of heterogeneity within this diagnostic category, and homogeneity across other putatively discrete, diagnostic categories. As psychiatry begins to recognize the shortcomings of a purely symptom-based psychiatric nosology, new data-driven approaches have begun to be utilized with the goal of solving these problems: specifically, identifying trans-diagnostic aspects of clinical phenomenology based on their association with neurobiological processes. In this review, we describe key methodological approaches to understanding OCD from this perspective and highlight the candidate traits that have already been identified as a result of these early endeavours. We discuss how important inferences can be made from pre-existing case-control studies as well as showcasing newer methods that rely on large general population datasets to refine and validate psychiatric phenotypes. As exemplars, we take 'compulsivity' and 'anxiety', putatively trans-diagnostic symptom dimensions that are linked to well-defined neurobiological mechanisms, goal-directed learning and error-related negativity, respectively. We argue that the identification of biologically valid, more homogeneous, dimensions such as these provides renewed optimism for identifying reliable genetic contributions to OCD and other disorders, improving animal models and critically, provides a path towards a future of more targeted psychiatric treatments.Peer reviewedFinal Published versio
High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter
Context. High contrast imaging is a powerful technique to search for gas
giant planets and brown dwarfs orbiting at separation larger than several AU.
Around solar-type stars, giant planets are expected to form by core accretion
or by gravitational instability, but since core accretion is increasingly
difficult as the primary star becomes lighter, gravitational instability would
be the a probable formation scenario for yet-to-be-found distant giant planets
around a low-mass star. A systematic survey for such planets around M dwarfs
would therefore provide a direct test of the efficiency of gravitational
instability. Aims. We search for gas giant planets orbiting around late-type
stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep
high resolution images of 16 targets with the adaptive optic system of VLT-NACO
in the Lp band, using direct imaging and angular differential imaging. This is
currently the largest and deepest survey for Jupiter-mass planets around
Mdwarfs. We developed and used an integrated reduction and analysis pipeline to
reduce the images and derive our 2D detection limits for each target. The
typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes
beyond 1". For each target we also determine the probability of detecting a
planet of a given mass at a given separation in our images. Results. We derived
accurate detection probabilities for planetary companions, taking into account
orbital projection effects, with in average more than 50% probability to detect
a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong
constraints on the existence of Jupiter-mass planets around this sample of
young M-dwarfs.Comment: Accepted for publication in A&
Laboratory validation of the dual-zone phase mask coronagraph in broadband light at the high-contrast imaging THD-testbed
Specific high contrast imaging instruments are mandatory to characterize
circumstellar disks and exoplanets around nearby stars. Coronagraphs are
commonly used in these facilities to reject the diffracted light of an observed
star and enable the direct imaging and spectroscopy of its circumstellar
environment. One important property of the coronagraph is to be able to work in
broadband light.
Among several proposed coronagraphs, the dual-zone phase mask coronagraph is
a promising solution for starlight rejection in broadband light. In this paper,
we perform the first validation of this concept in laboratory.
First, we recall the principle of the dual-zone phase mask coronagraph. Then,
we describe the high-contrast imaging THD testbed, the manufacturing of the
components and the quality-control procedures. Finally, we study the
sensitivity of our coronagraph to low-order aberrations (inner working angle
and defocus) and estimate its contrast performance. Our experimental broadband
light results are compared with numerical simulations to check agreement with
the performance predictions.
With the manufactured prototype and using a dark hole technique based on the
self-coherent camera, we obtain contrast levels down to between 5
and 17 in monochromatic light (640 nm). We also reach contrast
levels of between 7 and 17 in broadband
( nm, nm and %), which demonstrates the excellent chromatic performance of the dual-zone
phase mask coronagraph.
The performance reached by the dual-zone phase mask coronagraph is promising
for future high-contrast imaging instruments that aim at detecting and
spectrally characterizing old or light gaseous planets.Comment: 9 pages, 16 figure
When the catenary degree agrees with the tame degree in numerical semigroups of embedding dimension three
We characterize numerical semigroups of embedding dimension three having the same catenary and tame degrees.GarcĂa SĂĄnchez is supported by the projects MTM2010-15595, FQM-343, FQM-5849, and FEDER funds. The contents of this article are part of Violaâs masterâs thesis. Part of this work was done while she visited the Univerisidad de Granada under the European Erasmus mobility program
Discovery of a Low-Mass Companion to the F7V star HD 984
We report the discovery of a low-mass companion to the nearby (d = 47 pc) F7V
star HD 984. The companion is detected 0.19" away from its host star in the L'
band with the Apodizing Phase Plate on NaCo/VLT and was recovered by L'-band
non-coronagraphic imaging data taken a few days later. We confirm the companion
is co-moving with the star with SINFONI integral field spectrograph H+K data.
We present the first published data obtained with SINFONI in pupil-tracking
mode. HD 984 has been argued to be a kinematic member of the 30 Myr-old Columba
group, and its HR diagram position is not altogether inconsistent with being a
ZAMS star of this age. By consolidating different age indicators, including
isochronal age, coronal X-ray emission, and stellar rotation, we independently
estimate a main sequence age of 11585 Myr (95% CL) which does not rely on
this kinematic association. The mass of directly imaged companions are usually
inferred from theoretical evolutionary tracks, which are highly dependent on
the age of the star. Based on the age extrema, we demonstrate that with our
photometric data alone, the companion's mass is highly uncertain: between 33
and 96 M (0.03-0.09 M) using the COND evolutionary
models. We compare the companion's SINFONI spectrum with field dwarf spectra to
break this degeneracy. Based on the slope and shape of the spectrum in the
H-band, we conclude that the companion is an M dwarf. The age of the
system is not further constrained by the companion, as M dwarfs are poorly fit
on low-mass evolutionary tracks. This discovery emphasizes the importance of
obtaining a spectrum to spectral type companions around F-stars.Comment: Accepted for publication in MNRAS, 10 pages, 5 figure
Tuning the Reactivity of TEMPO during Electrocatalytic Alcohol Oxidations in Room-Temperature Ionic Liquids
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) is a promising, sustainable, metal-free mediator for oxidation of alcohols. In this contribution, we describe how the selectivity of TEMPO for electrocatalytic alcohol oxidations in room-temperature ionic liquids (RTILs) can be changed by design of the solvent medium. Cyclic voltammetry of TEMPO in a series of ammonium-, phosphonium-, and imidazolium-based RTILs reveals that the potential at which TEMPO is oxidized increases from 677 mV (vs. the potential of the decamethylferrocene/ decamethylferrocinium, dmFc/dmFc+, redox couple) to 788 mV as the H-bond basicity of the RTIL anions decreases. The increase in potential is accompanied by an increase in the rate constant for oxidation of benzyl alcohol from about 0.1 dm3 molâ1 sâ1 to about 0.7 dm3 molâ1 sâ1, demonstrating the ability to manipulate the reactivity of TEMPO by judicious choice of the RTIL anions. The rate of alcohol oxidation in a series of RTILs increases in the order 2-butanol < 1phenylethanol < octanol < benzyl alcohol, and the RTIL 1-octyl-3-methylmidazolium bis(trifluoromethanesulfonyl)imide ([NTf2]â) shows clear selectivity towards the oxidation of primary alcohols. In addition, the reaction kinetics and selectivity are better in [NTf2]â-based RTILs than in acetonitrile, often the solvent-of-choice in indirect alcohol electrooxidations. Finally, we demonstrate that electrolytic TEMPO-mediated alcohol oxidations can be performed using RTILs in a flow-electrolysis system, with excellent yields and reaction selectivity, demonstrating the opportunities offered by such systems
- âŠ