277 research outputs found
Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses
Optimized light-matter coupling in semiconductor nanostructures is a key to
understand their optical properties and can be enabled by advanced fabrication
techniques. Using in-situ electron beam lithography combined with a
low-temperature cathodoluminescence imaging, we deterministically fabricate
microlenses above selected InAs quantum dots (QDs) achieving their efficient
coupling to the external light field. This enables to perform four-wave mixing
micro-spectroscopy of single QD excitons, revealing the exciton population and
coherence dynamics. We infer the temperature dependence of the dephasing in
order to address the impact of phonons on the decoherence of confined excitons.
The loss of the coherence over the first picoseconds is associated with the
emission of a phonon wave packet, also governing the phonon background in
photoluminescence (PL) spectra. Using theory based on the independent boson
model, we consistently explain the initial coherence decay, the zero-phonon
line fraction, and the lineshape of the phonon-assisted PL using realistic
quantum dot geometries
Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy
We acknowledge the support by the ERC Starting Grant PICSEN, contract no. 306387. D.E.R. is grateful for financial support from the DAAD within the P.R.I.M.E. program.A detailed understanding of the population and coherence dynamics in optically driven individual emitters in solids and their signatures in ultrafast nonlinear-optical signals is of prime importance for their applications in future quantum and optical technologies. In a combined experimental and theoretical study on exciton complexes in single semiconductor quantum dots we reveal a detailed picture of the dynamics employing three-beam polarization-resolved four-wave mixing (FWM) micro-spectroscopy. The oscillatory dynamics of the FWM signals in the exciton-biexciton system is governed by the fine-structure splitting and the biexciton binding energy in an excellent quantitative agreement between measurement and analytical description. The analysis of the excitation conditions exhibits a dependence of the dynamics on the specific choice of polarization configuration, pulse areas and temporal ordering of driving fields. The interplay between the transitions in the four-level exciton system leads to rich evolution of coherence and population. Using two-dimensional FWM spectroscopy we elucidate the exciton-biexciton coupling and identify neutral and charged exciton complexes in a single quantum dot. Our investigations thus clearly reveal that FWM spectroscopy is a powerful tool to characterize spectral and dynamical properties of single quantum structures.PostprintPostprintPeer reviewe
Prosodic tools for language learning
In this paper we will be concerned with the role played by prosody in language learning and by the speech technology already available as commercial product or as prototype, capable to cope with the task of helping language learner in improving their knowledge of a second language from the prosodic point of view. The paper has been divided into two separate sections: Section One, dealing with Rhythm and all related topics; Section Two dealing with Intonation. In the Introduction we will argue that the use of ASR (Automatic Speech Recognition) as Teaching Aid should be under-utilized and should be targeted to narrowly focussed spoken exercises, disallowing open-ended dialogues, in order to ensure consistency of evaluation. Eventually, we will support the conjoined use of ASR technology and prosodic tools to produce GOP useable for linguistically consistent and adequate feedback to the student. This will be illustrated by presenting State of the Art for both sections, with systems well documented in the scientific literature of the respective field.
In order to discuss the scientific foundations of prosodic analysis we will present data related to English and Italian and make comparisons to clarify the issues at hand. In this context, we will also present the Prosodic Module of a courseware for computer-assisted foreign language learning called SLIM—an acronym for Multimedia Interactive Linguistic Software, developed at the University of Venice (Delmonte et al. in Convegno GFS-AIA, pp. 47–58, 1996a; Ed-Media 96, AACE, pp. 326–333, 1996b). The Prosodic Module has been created in order to deal with the problem of improving a student’s performance both in the perception and production of prosodic aspects of spoken language activities. It is composed of two different sets of Learning Activities, the first one dealing with phonetic and prosodic problems at word level and at syllable level; the second one dealing with prosodic aspects at phonological phrase and utterance suprasegmental level. The main goal of Prosodic Activities is to ensure consistent and pedagogically sound feedback to the student intending to improve his/her pronunciation in a foreign language
Detection of ice core particles via deep neural networks
Insoluble particles in ice cores record signatures of past climate parameters like vegetation, volcanic activity or aridity. Their analytical detection depends on intensive bench microscopy investigation and requires dedicated sample preparation steps. Both are laborious, require in-depth knowledge and often restrict sampling strategies. To help overcome these limitations, we present a framework based on Flow Imaging Microscopy coupled to a deep neural network for autonomous image classification of ice core particles. We train the network to classify 7 commonly found classes: mineral dust, felsic and basaltic volcanic ash (tephra), three species of pollen (Corylus avellana, Quercus robur, Quercus suber) and contamination particles that may be introduced onto the ice core surface during core handling operations. The trained network achieves 96.8 % classification accuracy at test time. We present the system’s potentials and limitations with respect to the detection of mineral dust, pollen grains and tephra shards, using both controlled materials and real ice core samples. The methodology requires little sample material, is non destructive, fully reproducible and does not require any sample preparation step. The presented framework can bolster research in the field, by cutting down processing time, supporting human-operated microscopy and further unlocking the paleoclimate potential of ice core records by providing the opportunity to identify an array of ice core particles. Suggestions for an improved system to be deployed within a continuous flow analysis workflow are also presented
A Phase 1b Study of Telisotuzumab Vedotin in Combination With Nivolumab in Patients With NSCLC
Introduction: Telisotuzumab vedotin (Teliso-V) is an anti-c-Met-directed antibody-drug conjugate that has exhibited antitumor activity as monotherapy in NSCLC. Its potential activity combined with programmed cell death protein-1 inhibitors has not been previously evaluated.
Methods: In a phase 1b study (NCT02099058), adult patients (≥18 y) with advanced NSCLC received combination therapy with Teliso-V (1.6, 1.9, or 2.2 mg/kg, every 2 wk) plus nivolumab (3 mg/kg, 240 mg, or per locally approved label). The primary objective was to assess safety and tolerability; secondary objectives included the evaluation of antitumor activity.
Results: As of January 2020, a total of 37 patients received treatment with Teliso-V (safety population) in combination with nivolumab; 27 patients (efficacy population) were c-Met immunohistochemistry-positive. Programmed death-ligand 1 (PD-L1) status was evaluated in the efficacy population (PD-L1-positive [PD-L1+]: n = 15; PD-L1-negative [PD-L1-]: n = 9; PD-L1-unknown: n = 3). The median age was 67 years and 74% (20 of 27) of patients were naive to immune checkpoint inhibitors. The most common any-grade treatment-related adverse events were fatigue (27%) and peripheral sensory neuropathy (19%). The pharmacokinetic profile of Teliso-V plus nivolumab was similar to Teliso-V monotherapy. The objective response rate was 7.4%, with two patients (PD-L1+, c-Met immunohistochemistry H-score 190, n = 1; PD-L1-, c-Met H-score 290, n = 1) having a confirmed partial response. Overall median progression-free survival was 7.2 months (PD-L1+: 7.2 mo; PD-L1-: 4.5 mo; PD-L1-unknown: not reached).
Conclusions: Combination therapy with Teliso-V plus nivolumab was well tolerated in patients with c-Met+ NSCLC with limited antitumor activity
Brigatinib Versus Crizotinib in ALK Inhibitor–Naive Advanced ALK-Positive NSCLC: Final Results of Phase 3 ALTA-1L Trial
Introduction: In the phase 3 study entitled ALK in Lung cancer Trial of brigAtinib in 1st Line (ALTA-1L), which is a study of brigatinib in ALK inhibitor–naive advanced ALK-positive NSCLC, brigatinib exhibited superior progression-free survival (PFS) versus crizotinib in the two planned interim analyses. Here, we report the final efficacy, safety, and exploratory results. Methods: Patients were randomized to brigatinib 180 mg once daily (7-d lead-in at 90 mg once daily) or crizotinib 250 mg twice daily. The primary end point was a blinded independent review committee–assessed PFS. Genetic alterations in plasma cell-free DNA were assessed in relation to clinical efficacy. Results: A total of 275 patients were enrolled (brigatinib, n = 137; crizotinib, n = 138). At study end, (brigatinib median follow-up = 40.4 mo), the 3-year PFS by blinded independent review committee was 43% (brigatinib) versus 19% (crizotinib; median = 24.0 versus 11.1 mo, hazard ratio [HR] = 0.48, 95% confidence interval [CI]: 0.35–0.66). The median overall survival was not reached in either group (HR = 0.81, 95% CI: 0.53–1.22). Posthoc analyses suggested an overall survival benefit for brigatinib in patients with baseline brain metastases (HR = 0.43, 95% CI: 0.21–0.89). Detectable baseline EML4-ALK fusion variant 3 and TP53 mutation in plasma were associated with poor PFS. Brigatinib exhibited superior efficacy compared with crizotinib regardless of EML4-ALK variant and TP53 mutation. Emerging secondary ALK mutations were rare in patients progressing on brigatinib. No new safety signals were observed. Conclusions: In the ALTA-1L final analysis, with longer follow-up, brigatinib continued to exhibit superior efficacy and tolerability versus crizotinib in patients with or without poor prognostic biomarkers. The suggested survival benefit with brigatinib in patients with brain metastases warrants future study
Molecular correlates of response to capmatinib in advanced non-small-cell lung cancer: clinical and biomarker results from a phase I trial
Background: Dysregulation of receptor tyrosine kinase MET by various mechanisms occurs in 3%–4% of non-small-cell lung cancer (NSCLC) and is associated with unfavorable prognosis. While MET is a validated drug target in lung cancer, the best biomarker strategy for the enrichment of a susceptible patient population still remains to be defined. Towards this end we analyze here primary data from a phase I dose expansion study of the MET inhibitor capmatinib in patients with advanced MET-dysregulated NSCLC. Patients and methods: Eligible patients [≥18 years; Eastern Cooperative Oncology Group (ECOG) performance status ≤2] with MET-dysregulated advanced NSCLC, defined as either (i) MET status by immunohistochemistry (MET IHC) 2+ or 3+ or H-score ≥150, or MET/centromere ratio ≥2.0 or gene copy number (GCN) ≥5, or (ii) epidermal growth factor receptor wild-type (EGFRwt) and centrally assessed MET IHC 3+, received capmatinib at the recommended dose of 400 mg (tablets) or 600 mg (capsules) b.i.d. The primary objective was to determine safety and tolerability; the key secondary objective was to explore antitumor activity. The exploratory end point was the correlation of clinical activity with different biomarker formats. Results: Of 55 patients with advanced MET-dysregulated NSCLC, 40/55 (73%) had received two or more prior systemic therapies. All patients discontinued treatment, primarily due to disease progression (69.1%). The median treatment dur
- …