95 research outputs found
Ta(n, γ) cross-section measurement and the astrophysical origin of the Ta isotope
Ta is nature\u27s rarest (quasi) stable isotope and its astrophysical origin is an open question. A possible production site of this isotope is the slow neutron capture process in asymptotic giant branch stars, where it can be produced via neutron capture reactions on unstable Ta. We report a new measurement of the Ta(n,γ) Ta cross section at thermal-neutron energies via the activation technique. Our results for the thermal and resonance-integral cross sections are 952±57 and 2013±148 b, respectively. The thermal cross section is in good agreement with the only previous measurement [Phys. Rev. C 60, 025802 (1999)], while the resonance integral is different by a factor of ≈1.7. While neutron energies in this work are smaller than the energies in a stellar environment, our results may lead to improvements in theoretical predictions of the stellar cross section
Coexistence of the spin-density-wave and superconductivity in the (Ba,K)Fe2As2
The relation between the spin-density-wave (SDW) and superconducting order is
a central topic in current research on the FeAs-based high Tc superconductors.
Conflicting results exist in the LaFeAs(O,F)-class of materials, for which
whether the SDW and superconductivity are mutually exclusive or they can
coexist has not been settled. Here we show that for the (Ba,K)Fe2As2 system,
the SDW and superconductivity can coexist in an extended range of compositions.
The availability of single crystalline samples and high value of the energy
gaps would make the materials a model system to investigate the high Tc
ferropnictide superconductivity.Comment: 4 pages, 5 figure
Storage, Accumulation and Deceleration of Secondary Beams for Nuclear Astrophysics
Low-energy investigations on rare ion beams are often limited by the
available intensity and purity of the ion species in focus. Here, we present
the first application of a technique that combines in-flight production at
relativistic energies with subsequent secondary beam storage, accumulation and
finally deceleration to the energy of interest. Using the FRS and ESR
facilities at GSI, this scheme was pioneered to provide a secondary beam of
Te for the measurement of nuclear proton-capture at energies of
6 and 7 MeV/u. The technique provided stored beam intensities of about
ions at high purity and brilliance, representing a major step towards
low-energy nuclear physics studies using rare ion beams
Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF
This article presents a few selected developments and future ideas related to the measurement of (n,γ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with γ-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area
Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF
This article presents a few selected developments and future ideas related to the measurement of (n,γ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with γ-ray imaging capability for background suppression, and the development of an array of small-volume organic scintillators aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area
Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments
One of the critical aspects for the accurate determination of neutron capture
cross sections when combining time-of-flight and total energy detector
techniques is the characterization and control of systematic uncertainties
associated to the measuring devices. In this work we explore the most
conspicuous effects associated to harsh count rate conditions: dead-time and
pile-up effects. Both effects, when not properly treated, can lead to large
systematic uncertainties and bias in the determination of neutron cross
sections. In the majority of neutron capture measurements carried out at the
CERN n\_TOF facility, the detectors of choice are the CD
liquid-based either in form of large-volume cells or recently commissioned sTED
detector array, consisting of much smaller-volume modules. To account for the
aforementioned effects, we introduce a Monte Carlo model for these detectors
mimicking harsh count rate conditions similar to those happening at the CERN
n\_TOF 20~m fligth path vertical measuring station. The model parameters are
extracted by comparison with the experimental data taken at the same facility
during 2022 experimental campaign. We propose a novel methodology to consider
both, dead-time and pile-up effects simultaneously for these fast detectors and
check the applicability to experimental data from Au(,),
including the saturated 4.9~eV resonance which is an important component of
normalization for neutron cross section measurements
Analysis of arterial intimal hyperplasia: review and hypothesis
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign " intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl
Coulomb dissociation of O-16 into He-4 and C-12
We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4
- …