116 research outputs found
Matrix geometries and Matrix Models
We study a two parameter single trace 3-matrix model with SO(3) global
symmetry. The model has two phases, a fuzzy sphere phase and a matrix phase.
Configurations in the matrix phase are consistent with fluctuations around a
background of commuting matrices whose eigenvalues are confined to the interior
of a ball of radius R=2.0. We study the co-existence curve of the model and
find evidence that it has two distinct portions one with a discontinuous
internal energy yet critical fluctuations of the specific heat but only on the
low temperature side of the transition and the other portion has a continuous
internal energy with a discontinuous specific heat of finite jump. We study in
detail the eigenvalue distributions of different observables.Comment: 20 page
Quantum effective potential for U(1) fields on S^2_L X S^2_L
We compute the one-loop effective potential for noncommutative U(1) gauge
fields on S^2_L X S^2_L. We show the existence of a novel phase transition in
the model from the 4-dimensional space S^2_L X S^2_L to a matrix phase where
the spheres collapse under the effect of quantum fluctuations. It is also shown
that the transition to the matrix phase occurs at infinite value of the gauge
coupling constant when the mass of the two normal components of the gauge field
on S^2_L X S^2_L is sent to infinity.Comment: 13 pages. one figur
Probing the fuzzy sphere regularisation in simulations of the 3d \lambda \phi^4 model
We regularise the 3d \lambda \phi^4 model by discretising the Euclidean time
and representing the spatial part on a fuzzy sphere. The latter involves a
truncated expansion of the field in spherical harmonics. This yields a
numerically tractable formulation, which constitutes an unconventional
alternative to the lattice. In contrast to the 2d version, the radius R plays
an independent r\^{o}le. We explore the phase diagram in terms of R and the
cutoff, as well as the parameters m^2 and \lambda. Thus we identify the phases
of disorder, uniform order and non-uniform order. We compare the result to the
phase diagrams of the 3d model on a non-commutative torus, and of the 2d model
on a fuzzy sphere. Our data at strong coupling reproduce accurately the
behaviour of a matrix chain, which corresponds to the c=1-model in string
theory. This observation enables a conjecture about the thermodynamic limit.Comment: 31 pages, 15 figure
Standardizing training for Pressurized Intraperitoneal Aerosol Chemotherapy.
PIPAC is a novel mode of intraperitoneal drug delivery for patients with peritoneal cancer (PC). PIPAC is a safe treatment with promising oncological results. Therefore, a structured training program is needed to maintain high standards and to guarantee safe implementation.
An international panel of PIPAC experts created by means of a consensus meeting a structured 2-day training course including essential theoretical content and practical exercises. For every module, learning objectives were defined and structured presentations were elaborated. This structured PIPAC training program was then tested in five courses.
The panel consisted of 12 experts from 11 different centres totalling a cumulative experience of 23 PIPAC courses and 1880 PIPAC procedures. The final program was approved by all members of the panel and includes 12 theoretical units (45 min each) and 6 practical units including dry-lab and live surgeries. The panel finalized and approved 21 structured presentations including the latest evidence on PIPAC and covering all mandatory topics. These were organized in 8 modules with clear learning objectives to be tested by 12 multiple-choice questions. Lastly, a structured quantifiable (Likert scale 1-5) course evaluation was created. The new course was successfully tested in five courses with 85 participants. Mean overall satisfaction with the content was rated at 4.79 (±0.5) with at 4.71 (±0.5) and at 4.61 (±0.7), respectively for course length and the balance between theory and practice.
The proposed PIPAC training program contains essential theoretical background and practical training enabling the participants to safely implement PIPAC
Towards Noncommutative Fuzzy QED
We study in one-loop perturbation theory noncommutative fuzzy quenched QED_4.
We write down the effective action on fuzzy S**2 x S**2 and show the existence
of a gauge-invariant UV-IR mixing in the model in the large N planar limit. We
also give a derivation of the beta function and comment on the limit of large
mass of the normal scalar fields. We also discuss topology change in this 4
fuzzy dimensions arising from the interaction of fields (matrices) with
spacetime through its noncommutativity.Comment: 33 page
Análisis de la energía cinética turbulenta en un tanque de agitación aplicando velocimetría por imágenes de partículas
La aplicación de los tanques de agitación se extiende a lo largo de una gran variedad de industrias, como la alimentaria, la química, la minera, la farmacéutica entre otras, teniendo como principal objetivo alcanzar una mezcla homogénea de su contenido, donde la energía mecánica se transforma en energía cinética. Esto produce un incremento de la velocidad y conlleva a la creación de patrones de flujo que se encuentran dentro del tanque. En este trabajo se analizó la energía cinética turbulenta (TKE, por sus siglas en inglés, Turbulent Kinetic Energy) mediante la técnica de la velocimetría por imágenes de partículas (PIV, por sus siglas en inglés, Particle Image Velocimetry), utilizando la metodología de la resolución angular. Lo cual permitirá observar su variación conforme el impulsor cambia su posición angular con respecto al plano de medición.The employment of the stirred tank extends among a wide industry process, such as the food, the chemical, the mineral processing, the pharmaceutical, and so on. Been its principal aim to achieve a homogeneous mixture of its content. Here the mechanical energy is converted to kinetic energy. Yielding to an increase of the velocity flow and the generation of fluid patterns inside the tank. In this work the Turbulent Kinetic Energy (TKE) was evaluated by means of the Particle Image Velocimetry using the angled-resolved approach. This allow to observe the variation of the TKE when the impeller changes its angular position according to the measured plane
Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere
We address a detailed non-perturbative numerical study of the scalar theory
on the fuzzy sphere. We use a novel algorithm which strongly reduces the
correlation problems in the matrix update process, and allows the investigation
of different regimes of the model in a precise and reliable way. We study the
modes associated to different momenta and the role they play in the ``striped
phase'', pointing out a consistent interpretation which is corroborated by our
data, and which sheds further light on the results obtained in some previous
works. Next, we test a quantitative, non-trivial theoretical prediction for
this model, which has been formulated in the literature: The existence of an
eigenvalue sector characterised by a precise probability density, and the
emergence of the phase transition associated with the opening of a gap around
the origin in the eigenvalue distribution. The theoretical predictions are
confirmed by our numerical results. Finally, we propose a possible method to
detect numerically the non-commutative anomaly predicted in a one-loop
perturbative analysis of the model, which is expected to induce a distortion of
the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study
of the eigenvalue distribution, added figures, tables and references, typos
corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references
added, technical details about the tests at small matrix size skipped,
version published in JHE
PIV and dynamic LES of the turbulent stream and mixing induced by a V-grooved blade axial agitator
The hydrodynamic behavior of a turbulent flow and the mixing characteristics generated by a V-grooved axial impeller inside an agitated tank reactor were investigated both experimentally and numerically. Angle resolved Particle Image Velocimetry (PIV) techniques with an angular displacement Δθ = 5° have been applied and two aerodynamic planes along the blades were considered. PIV-based results were compared to those obtained by Large Eddy Simulation (LES), used with the dynamic Smagorinsky-Lilly sub-grid scale (SGS) model. Results showed the existence of distinctive recirculation zones in the aerodynamic planes, and new additional frequencies in the impeller stream, induced by the grooves. A decrease of mixing time of about 11% was obtained experimentally, consequence of the better suction induced by the grooved blades in the early stages of mixing. Mean velocities, vorticity, TKE obtained from LES showed a good agreement with the PIV-based results. The distributions of turbulence dissipation rate ε were similar to those obtained from PIV, however showing high under-predicted magnitudes
The effect of polymer/plasticiser ratio in film forming solutions on the properties of chitosan films
In this work physical-chemical properties of chitosan/ glycerol film forming solutions (FFS) and the resulting films were analysed. Solutions were prepared using different concentrations of plasticising agent (glycerol) and chitosan. Films were produced by solvent casting and equilibrated in a controlled atmosphere. FFS water activity and rheological behaviour were determined. Films water content, solubility, water vapour and oxygen permeabilities, thickness, and mechanical and thermal properties were determined. Fourier transform infrared (FTIR) spectroscopy was also used to study the chitosan/glycerol interactions.
Results demonstrate that FFS chitosan concentration influenced solutions consistency coefficient and this was related with differences in films water retention and structure. Plasticiser addition led to an increase in films moisture content, solubility and water vapour permeability, water affinity and structural changes. Films thermo-mechanical properties are significantly affected by both chitosan and glycerol addition. FTIR experiments confirm these results.
This work highlights the importance of glycerol and water plasticisation in films properties.This work was supported by National Funds from FCT - Fundacao para a Ciencia e a Tecnologia, through project PEst-OE/EQB/LA0016/2011.Authors Joana F. Fundo, Andrea C. Galvis-Sanchez and Mafalda A. C. Quintas acknowledge FCT for research grants SFRH/ BD / 62176 / 2009, SFRH/BPD/37890/2007 and SFRH / BPD / 41715 / 2007, respectively
State-of-the-art microscopy to understand islets of Langerhans:what to expect next?
The discovery of Langerhans and microscopic description of islets in the pancreas were crucial steps in the discovery of insulin. Over the past 150 years, many discoveries in islet biology and type 1 diabetes have been made using powerful microscopic techniques. In the past decade, combination of new probes, animal and tissue models, application of new biosensors and automation of light and electron microscopic methods and other (sub)cellular imaging modalities have proven their potential in understanding the beta cell under (patho)physiological conditions. The imaging evolution, from fluorescent jellyfish to real-time intravital functional imaging, the revolution in automation and data handling and the increased resolving power of analytical imaging techniques are now converging. Here, we review innovative approaches that address islet biology from new angles by studying cells and molecules at high spatiotemporal resolution and in live models. Broad implementation of these cellular imaging techniques will shed new light on cause/consequence of (mal)function in islets of Langerhans in the years to come
- …