9 research outputs found

    ExoClock project: an open platform for monitoring the ephemerides of Ariel targets with contributions from the public

    Get PDF
    The Ariel mission will observe spectroscopically around 1000 exoplanets to further characterise their atmospheres. For the mission to be as efficient as possible, a good knowledge of the planets’ ephemerides is needed before its launch in 2028. While ephemerides for some planets are being refined on a per-case basis, an organised effort to collectively verify or update them when necessary does not exist. In this study, we introduce the ExoClock project, an open, integrated and interactive platform with the purpose of producing a confirmed list of ephemerides for the planets that will be observed by Ariel. The project has been developed in a manner to make the best use of all available resources: observations reported in the literature, observations from space instruments and, mainly, observations from ground-based telescopes, including both professional and amateur observatories. To facilitate inexperienced observers and at the same time achieve homogeneity in the results, we created data collection and validation protocols, educational material and easy to use interfaces, open to everyone. ExoClock was launched in September 2019 and now counts over 140 participants from more than 15 countries around the world. In this release, we report the results of observations obtained until the 15h of April 2020 for 120 Ariel candidate targets. In total, 632 observations were used to either verify or update the ephemerides of 84 planets. Additionally, we developed the Exoplanet Characterisation Catalogue (ECC), a catalogue built in a consistent way to assist the ephemeris refinement process. So far, the collaborative open framework of the ExoClock project has proven to be highly efficient in coordinating scientific efforts involving diverse audiences. Therefore, we believe that it is a paradigm that can be applied in the future for other research purposes, too

    A survey for variable young stars with small telescopes: II - mapping a protoplanetary disc with stable structures at 0.15 au

    Get PDF
    The HOYS citizen science project conducts long term, multifilter, high cadence monitoring of large YSO samples with a wide variety of professional and amateur telescopes. We present the analysis of the light curve of V1490 Cyg in the Pelican Nebula. We show that colour terms in the diverse photometric data can be calibrated out to achieve a median photometric accuracy of 0.02 mag in broadband filters, allowing detailed investigations into a variety of variability amplitudes over timescales from hours to several years. Using Gaia DR2 we estimate the distance to the Pelican Nebula to be 870 +70 −55 pc. V1490 Cyg is a quasi-periodic dipper with a period of 31.447 ± 0.011 d. The obscuring dust has homogeneous properties, and grains larger than those typical in the ISM. Larger variability on short timescales is observed in U and Rc−Hα, with U-amplitudes reaching 3 mag on timescales of hours, indicating the source is accreting. The Hα equivalent width and NIR/MIR colours place V1490 Cyg between CTTS/WTTS and transition disk objects. The material responsible for the dipping is located in a warped inner disk, about 0.15 AU from the star. This mass reservoir can be filled and emptied on time scales shorter than the period at a rate of up to 10−10 M�/yr, consistent with low levels of accretion in other T Tauri stars. Most likely the warp at this separation from the star is induced by a protoplanet in the inner accretion disk. However, we cannot fully rule out the possibility of an AA Tau-like warp, or occultations by the Hill sphere around a forming planet

    A survey for variable young stars with small telescopes: VIII — Properties of 1687 Gaia selected members in 21 nearby clusters

    Get PDF
    The Hunting Outbursting Young Stars (HOYS) project performs long-term, optical, multi- filter, high cadence monitoring of 25 nearby young clusters and star forming regions. Utilising Gaia DR3 data we have identified about 17000 potential young stellar members in 45 coherent astrometric groups in these fields. Twenty one of them are clear young groups or clusters of stars within one kiloparsec and they contain 9143 Gaia selected potential members. The cluster distances, proper motions and membership numbers are determined. We analyse long term ( 7 yr) V, R, and I-band light curves from HOYS for 1687 of the potential cluster members. One quarter of the stars are variable in all three optical filters, and two thirds of these have light curves that are symmetric around the mean. Light curves affected by obscuration from circumstellar materials are more common than those affected by accretion bursts, by a factor of 2 – 4. The variability fraction in the clusters ranges from 10 to almost 100 percent, and correlates positively with the fraction of stars with detectable inner disks, indicating that a lot of variability is driven by the disk. About one in six variables shows detectable periodicity, mostly caused by magnetic spots. Two thirds of the periodic variables with disk excess emission are slow rotators, and amongst the stars without disk excess two thirds are fast rotators – in agreement with rotation being slowed down by the presence of a disk

    A survey for variable young stars with small telescopes – VIII. Properties of 1687 Gaia selected members in 21 nearby clusters

    Get PDF
    The Hunting Outbursting Young Stars (HOYS) project performs long-term, optical, multi-filter, high cadence monitoring of 25 nearby young clusters and star forming regions. Utilising Gaia DR3 data we have identified about 17000 potential young stellar members in 45 coherent astrometric groups in these fields. Twenty one of them are clear young groups or clusters of stars within one kiloparsec and they contain 9143 Gaia selected potential members. The cluster distances, proper motions and membership numbers are determined. We analyse long term (≈ 7 yr) V, R, and I-band light curves from HOYS for 1687 of the potential cluster members. One quarter of the stars are variable in all three optical filters, and two thirds of these have light curves that are symmetric around the mean. Light curves affected by obscuration from circumstellar materials are more common than those affected by accretion bursts, by a factor of 2 – 4. The variability fraction in the clusters ranges from 10 to almost 100 percent, and correlates positively with the fraction of stars with detectable inner disks, indicating that a lot of variability is driven by the disk. About one in six variables shows detectable periodicity, mostly caused by magnetic spots. Two thirds of the periodic variables with disk excess emission are slow rotators, and amongst the stars without disk excess two thirds are fast rotators – in agreement with rotation being slowed down by the presence of a disk

    Surface Heterogeneity, Physical, and Shape Model of Near-Earth Asteroid (52768) 1998 OR2

    Full text link
    peer reviewedOn 2020 April 29, the near-Earth object (52768) 1998 OR2 experienced a close approach to Earth at a distance of 16.4 lunar distances (LD). 1998 OR2 is a potentially hazardous asteroid of absolute magnitude H = 16.04 that can currently come as close to Earth as 3.4 LD. We report here observations of this object in polarimetry, photometry, and radar. Our observations show that the physical characteristics of 1998 OR2 are similar to those of both M- and S-type asteroids. Arecibo's radar observations provide a high radar albedo of sigma _OC = 0.29 ± 0.08, suggesting that metals are present in 1998 OR2 near-surface. We find a circular polarization ratio of μc = 0.291 ± 0.012, and the delay-Doppler images show that the surface of 1998 OR2 is a top-shape asteroid with large-scale structures such as large craters and concavities. The polarimetric observations display a consistent variation of the polarimetric response as a function of the rotational phase, suggesting that the surface of 1998 OR2 is heterogeneous. Color observations suggest an X-complex taxonomy in the Bus–DeMeo classification. Combining optical polarization, radar, and two epochs from the NEOWISE satellite observations, we derived an equivalent diameter of D = 1.80 ± 0.1 km and a visual albedo pv = 0.21 ± 0.02. Photometric and radar data provide a sidereal rotation period of P = 4.10872 ± 0.00001 hr, a pole orientation of (332.°3 ± 5°, 20.°7 ± 5°), and a shape model with dimensions of ({2.08}_{-0.10}^{+0.10}, {1.93}_{-0.10}^{+0.10},{1.60}_{-0.05}^{+0.05}) km

    A survey for variable young stars with small telescopes – IV. Rotation periods of YSOs in IC 5070

    No full text
    Studying rotational variability of young stars is enabling us to investigate a multitude of properties of young star-disc systems. We utilize high cadence, multiwavelength optical time series data from the Hunting Outbursting Young Stars citizen science project to identify periodic variables in the Pelican Nebula (IC 5070). A double blind study using nine different period-finding algorithms was conducted and a sample of 59 periodic variables was identified. We find that a combination of four period finding algorithms can achieve a completeness of 85 per cent and a contamination of 30 per cent in identifying periods in inhomogeneous data sets. The best performing methods are periodograms that rely on fitting a sine curve. Utilizing Gaia EDR3 data, we have identified an unbiased sample of 40 periodic young stellar objects (YSOs), without using any colour or magnitude selections. With a 98.9 per cent probability, we can exclude a homogeneous YSO period distribution. Instead, we find a bi-modal distribution with peaks at 3 and 8 d. The sample has a disc fraction of 50 per cent, and its statistical properties are in agreement with other similarly aged YSOs populations. In particular, we confirm that the presence of the disc is linked to predominantly slow rotation and find a probability of 4.8 × 10−3 that the observed relation between period and presence of a disc has occurred by chance. In our sample of periodic variables, we also find pulsating giants, an eclipsing binary, and potential YSOs in the foreground of IC 5070

    A survey for variable young stars with small telescopes - IV. Rotation periods of YSOs in IC 5070

    Get PDF
    Studying rotational variability of young stars is enabling us to investigate a multitude of properties of young star-disc systems. We utilize high cadence, multiwavelength optical time series data from the Hunting Outbursting Young Stars citizen science project to identify periodic variables in the Pelican Nebula (IC 5070). A double blind study using nine different period-finding algorithms was conducted and a sample of 59 periodic variables was identified. We find that a combination of four period finding algorithms can achieve a completeness of 85 per cent and a contamination of 30 per cent in identifying periods in inhomogeneous data sets. The best performing methods are periodograms that rely on fitting a sine curve. Utilizing Gaia EDR3 data, we have identified an unbiased sample of 40 periodic young stellar objects (YSOs), without using any colour or magnitude selections. With a 98.9 per cent probability, we can exclude a homogeneous YSO period distribution. Instead, we find a bi-modal distribution with peaks at 3 and 8 d. The sample has a disc fraction of 50 per cent, and its statistical properties are in agreement with other similarly aged YSOs populations. In particular, we confirm that the presence of the disc is linked to predominantly slow rotation and find a probability of 4.8 × 10−3 that the observed relation between period and presence of a disc has occurred by chance. In our sample of periodic variables, we also find pulsating giants, an eclipsing binary, and potential YSOs in the foreground of IC 5070
    corecore