4,476 research outputs found
Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope
We performed Spitzer Infrared Spectrograph mapping observations covering
nearly the entire extent of the Cassiopeia A supernova remnant (SNR), producing
mid-infrared (5.5-35 micron) spectra every 5-10". Gas lines of Ar, Ne, O, Si, S
and Fe, and dust continua were strong for most positions. We identify three
distinct ejecta dust populations based on their continuum shapes. The dominant
dust continuum shape exhibits a strong peak at 21 micron. A line-free map of 21
micron-peak dust made from the 19-23 micron range closely resembles the [Ar
II], [O IV], and [Ne II] ejecta-line maps implying that dust is freshly formed
in the ejecta. Spectral fitting implies the presence of SiO2, Mg
protosilicates, and FeO grains in these regions. The second dust type exhibits
a rising continuum up to 21 micron and then flattens thereafter. This ``weak 21
micron'' dust is likely composed of Al2O3 and C grains. The third dust
continuum shape is featureless with a gently rising spectrum and is likely
composed of MgSiO3 and either Al2O3 or Fe grains. Using the least massive
composition for each of the three dust classes yields a total mass of 0.02
Msun. Using the most-massive composition yields a total mass of 0.054 Msun. The
primary uncertainty in the total dust mass stems from the selection of the dust
composition necessary for fitting the featureless dust as well as 70 micron
flux. The freshly formed dust mass derived from Cas A is sufficient from SNe to
explain the lower limit on the dust masses in high redshift galaxies.Comment: 8 figures: Accepted for the publication in Ap
Vertex corrections in localized and extended systems
Within many-body perturbation theory we apply vertex corrections to various
closed-shell atoms and to jellium, using a local approximation for the vertex
consistent with starting the many-body perturbation theory from a DFT-LDA
Green's function. The vertex appears in two places -- in the screened Coulomb
interaction, W, and in the self-energy, \Sigma -- and we obtain a systematic
discrimination of these two effects by turning the vertex in \Sigma on and off.
We also make comparisons to standard GW results within the usual random-phase
approximation (RPA), which omits the vertex from both. When a vertex is
included for closed-shell atoms, both ground-state and excited-state properties
demonstrate only limited improvements over standard GW. For jellium we observe
marked improvement in the quasiparticle band width when the vertex is included
only in W, whereas turning on the vertex in \Sigma leads to an unphysical
quasiparticle dispersion and work function. A simple analysis suggests why
implementation of the vertex only in W is a valid way to improve quasiparticle
energy calculations, while the vertex in \Sigma is unphysical, and points the
way to development of improved vertices for ab initio electronic structure
calculations.Comment: 8 Pages, 6 Figures. Updated with quasiparticle neon results, extended
conclusions and references section. Minor changes: Updated references, minor
improvement
The Three-Dimensional Structure of Interior Ejecta in Cassiopeia A at High Spectral Resolution
We used the Spitzer Space Telescope's Infrared Spectrograph to create a high
resolution spectral map of the central region of the Cassiopeia A supernova
remnant, allowing us to make a Doppler reconstruction of its 3D structure. The
ejecta responsible for this emission have not yet encountered the remnant's
reverse shock or the circumstellar medium, making it an ideal laboratory for
exploring the dynamics of the supernova explosion itself. We observe that the
O, Si, and S ejecta can form both sheet-like structures as well as filaments.
Si and O, which come from different nucleosynthetic layers of the star, are
observed to be coincident in velocity space in some regions, and separated by
500 km/s or more in others. Ejecta traveling toward us are, on average, ~900
km/s slower than the material traveling away from us. We compare our
observations to recent supernova explosion models and find that no single model
can simultaneously reproduce all the observed features. However, models of
different supernova explosions can collectively produce the observed geometries
and structures of the interior emission. We use the results from the models to
address the conditions during the supernova explosion, concentrating on
asymmetries in the shock structure. We also predict that the back surface of
Cassiopeia A will begin brightening in ~30 years, and the front surface in ~100
years.Comment: 35 pages, 16 figures, accepted to Ap
The Lillie Mae: A Capital Investment Project In Riverboat Restoration
This case involves a proposed capital investment project. It was written for use in an introductory business finance course to present students a capital budgeting scenario involving elements of both an expansion project and a replacement project that is more complex than the usual textbook problems. It also provides students an exercise in the application of standard spreadsheet software to a common analytical problem in corporate finance, namely, a proposed capital expenditure
Time Variability in the X-ray Nebula Powered by Pulsar B1509-58
We use new and archival Chandra and ROSAT data to study the time variability
of the X-ray emission from the pulsar wind nebula (PWN) powered by PSR B1509-58
on timescales of one week to twelve years. There is variability in the size,
number, and brightness of compact knots appearing within 20" of the pulsar,
with at least one knot showing a possible outflow velocity of ~0.6c (assuming a
distance to the source of 5.2 kpc). The transient nature of these knots may
indicate that they are produced by turbulence in the flows surrounding the
pulsar. A previously identified prominent jet extending 12 pc to the southeast
of the pulsar increased in brightness by 30% over 9 years; apparent outflow of
material along this jet is observed with a velocity of ~0.5c. However, outflow
alone cannot account for the changes in the jet on such short timescales.
Magnetohydrodynamic sausage or kink instabilities are feasible explanations for
the jet variability with timescale of ~1.3-2 years. An arc structure, located
30"-45" north of the pulsar, shows transverse structural variations and appears
to have moved inward with a velocity of ~0.03c over three years. The overall
structure and brightness of the diffuse PWN exterior to this arc and excluding
the jet has remained the same over the twelve year span. The photon indices of
the diffuse PWN and possibly the jet steepen with increasing radius, likely
indicating synchrotron cooling at X-ray energies.Comment: accepted to ApJ, 14 pages, 8 figure
The Lillie Mae: A Capital Investment Project In Riverboat Restoration
This case involves a proposed capital investment project.  It was written for use in an introductory business finance course to present students a capital budgeting scenario involving elements of both an expansion project and a replacement project that is more complex than the usual textbook problems.  It also provides students an exercise in the application of standard spreadsheet software to a common analytical problem in corporate finance, namely, a proposed capital expenditure
A Paradox Within The Time Value Of Money: A Critical Thinking Exercise For Finance Students
This study presents a paradox within the time value of money (TVM), namely, that the interest-principal sequence embedded in the payment stream of an amortized loan is exactly the opposite of the interest-principal sequence implicit in the present value of a matching annuity. We examine this inverse sequence, both mathematically and intuitively, and argue that it provides an excellent exercise for finance students to explore, both to enhance their critical thinking skills as well as to strengthen their understanding of TVM concepts. Additionally, such an exercise will involve them actively in the learning process, as mandated by AACSB Internationalâs Eligibility Procedures and Standards for Business Accreditation
Coherent States Formulation of Polymer Field Theory
We introduce a stable and efficient complex Langevin (CL) scheme to enable
the first numerical simulations of the coherent-states (CS) formulation of
polymer field theory. In contrast with Edwards' well known auxiliary-field (AF)
framework, the CS formulation does not contain an embedded non-linear,
non-local functional of the auxiliary fields, and the action of the field
theory has a fully explicit, finite-order and semi-local polynomial character.
In the context of a polymer solution model, we demonstrate that the new CS-CL
dynamical scheme for sampling fluctuations in the space of coherent states
yields results in good agreement with now-standard AF simulations. The
formalism is potentially applicable to a broad range of polymer architectures
and may facilitate systematic generation of trial actions for use in
coarse-graining and numerical renormalization-group studies.Comment: 14pages 8 figure
Mapping the spectral index of Cassiopeia A : evidence for flattening from radio to infrared
Funding: The work of VD is supported by a grant from the NWO graduate programme/GRAPPA-PhD programme. JVHS acknowledges support from the STFC grant ST/R000824/1.Synchrotron radiation from supernova remnants is caused by electrons accelerated through diffusive shock acceleration (DSA). The standard DSA theory predicts an electron spectral index of p = 2, corresponding to a radio spectral index of α = â0.5. An extension of DSA theory predicts that the accelerated particles change the shock structure, resulting in a spectrum that is steeper than p > 2 (α < â0.5) at low energies and flattens with energy. For Cassiopeia A, a synchrotron spectral flattening was previously reported for a small part of the remnant in the mid-infrared regime. Here, we present new measurements for spectral flattening using archival radio (4.72 GHz) and mid-infrared (3.6 Όm) data, and we produce a complete spectral index map to investigate the spatial variations within the remnant. We compare this to measurements of the radio spectral index from L-band (1.285 GHz) and C-band (4.64 GHz) maps. Our result shows overall spectral flattening across the remnant (αR-IR ⌠â0.5 to â0.7), to be compared with the radio spectral index of αR = â0.77. The flattest values coincide with the locations of most recent particle acceleration. In addition to overall flattening, we detect a relatively steeper region in the south-east of the remnant (αR-IR ⌠â0.67). We explore whether these locally steeper spectra could be the result of synchrotron cooling, which provides constraints on the local magnetic field strengths and the age of the plasma, suggesting B âČ 2 mG for an age of 100 yr, and even B âČ 1 mG using the age of Cas A, in agreement with other estimates.Publisher PDFPeer reviewe
- âŠ