159 research outputs found

    Policaptil Gel Retard significantly reduces body mass index and hyperinsulinism and may decrease the risk of type 2 diabetes mellitus (T2DM) in obese children and adolescents with family history of obesity and T2DM.

    Get PDF
    BACKGROUND: Treatments for childhood obesity are critically needed because of the risk of developing co-morbidities, although the interventions are frequently time-consuming, frustrating, difficult, and expensive. PATIENTS AND METHODS: We conducted a longitudinal, randomised, clinical study, based on a per protocol analysis, on 133 obese children and adolescents (n = 69 males and 64 females; median age, 11.3 years) with family history of obesity and type 2 diabetes mellitus (T2DM). The patients were divided into three arms: Arm A (n = 53 patients), Arm B (n = 45 patients), and Arm C (n = 35 patients) patients were treated with a low-glycaemic-index (LGI) diet and Policaptil Gel Retard®, only a LGI diet, or only an energy-restricted diet (ERD), respectively. The homeostasis model assessment of insulin resistance (HOMA-IR) and the Matsuda, insulinogenic and disposition indexes were calculated at T(0) and after 1 year (T(1)). RESULTS: At T(1), the BMI-SD scores were significantly reduced from 2.32 to 1.80 (p < 0.0001) in Arm A and from 2.23 to 1.99 (p < 0.05) in Arm B. Acanthosis nigricans was significantly reduced in Arm A (13.2% to 5.6%; p < 0.05), and glycosylated-haemoglobin levels were significantly reduced in Arms A (p < 0.005). The percentage of glucose-metabolism abnormalities was reduced, although not significantly. However, the HOMA-IR index was significantly reduced in Arms A (p < 0.0001) and B (p < 0.05), with Arm A showing a significant reduction in the insulinogenic index (p < 0.05). Finally, the disposition index was significantly improved in Arms A (p < 0.0001) and B (p < 0.05). CONCLUSIONS: A LGI diet, particularly associated with the use of Policaptil Gel Retard®, may reduce weight gain and ameliorate the metabolic syndrome and insulin-resistance parameters in obese children and adolescents with family history of obesity and T2DM

    The Role of Computational Methods in Cardiovascular Medicine: A Narrative Review

    Get PDF
    BACKGROUND AND OBJECTIVE: Computational models of the cardiovascular system allow for a detailed and quantitative investigation of both physiological and pathological conditions, thanks to their ability to combine clinical-possibly patient-specific-data with physical knowledge of the processes underlying the heart function. These models have been increasingly employed in clinical practice to understand pathological mechanisms and their progression, design medical devices, support clinicians in improving therapies. Hinging upon a long-year experience in cardiovascular modeling, we have recently constructed a computational multi-physics and multi-scale integrated model of the heart for the investigation of its physiological function, the analysis of pathological conditions, and to support clinicians in both diagnosis and treatment planning. This narrative review aims to systematically discuss the role that such model had in addressing specific clinical questions, and how further impact of computational models on clinical practice are envisaged. METHODS: We developed computational models of the physical processes encompassed by the heart function (electrophysiology, electrical activation, force generation, mechanics, blood flow dynamics, valve dynamics, myocardial perfusion) and of their inherently strong coupling. To solve the equations of such models, we devised advanced numerical methods, implemented in a flexible and highly efficient software library. We also developed computational procedures for clinical data post-processing-like the reconstruction of the heart geometry and motion from diagnostic images-and for their integration into computational models. KEY CONTENT AND FINDINGS: Our integrated computational model of the heart function provides non-invasive measures of indicators characterizing the heart function and dysfunctions, and sheds light on its underlying processes and their coupling. Moreover, thanks to the close collaboration with several clinical partners, we addressed specific clinical questions on pathological conditions, such as arrhythmias, ventricular dyssynchrony, hypertrophic cardiomyopathy, degeneration of prosthetic valves, and the way coronavirus disease 2019 (COVID-19) infection may affect the cardiac function. In multiple cases, we were also able to provide quantitative indications for treatment. CONCLUSIONS: Computational models provide a quantitative and detailed tool to support clinicians in patient care, which can enhance the assessment of cardiac diseases, the prediction of the development of pathological conditions, and the planning of treatments and follow-up tests

    X-ray management in electrophysiology: a survey of the Italian Association of Arrhythmology and Cardiac Pacing (AIAC)

    Get PDF
    Radiation use in medicine has significantly increased over the last decade, and cardiologists are among the specialists most responsible for X-ray exposure. The present study investigates a broad range of aspects, from specific European Union directives to general practical principles, related to radiation management among a national cohort of cardiologists

    Treatment of macro-re-entrant atrial tachycardia based on electroanatomic mapping: identification and ablation of the mid-diastolic isthmus

    Get PDF
    Aims This multicentre prospective study evaluated the ability of electroanatomic mapping (EAM) using a specific parameter setting to identify clearly the mid-diastolically activated isthmus (MDAI) and guide ablation of macro-re-entrant atrial tachycardia (MAT). Methods and results Consecutive patients with MAT, different from typical isthmus-dependent atrial flutter, were enrolled. EAM was performed using a specific setting of the window of interest, calculated to identify the MDAI and guide ablation of this area. Sixty-five patients exhibiting 81 MATs (mean cycle length 308 + 68 ms) were considered. Thirty-two (49.2%) had previous heart surgery. In 79 of 81 morphologies (97.5%), EAM reconstructed 95.9 + 4.3% of the tachycardia circuit and identified the MDAI; 23 of the 79 morphologies (29.1%) were double-loop re-entry. Mapping of two morphologies was incomplete due to MAT termination after catheter bumping. In 73 of 79 mapped morphologies (92.4%), abolition of the MAT was obtained by 13.2 + 12.4 applications. During the 14 + 4 month follow-up, MAT recurred in 4 of the successfully treated patients (6.8%). Conclusion EAM using a specific parameter setting proved highly effective at identifying the MDAI in MAT, even in patients with previous surgery and multiple re-entrant loops. Ablation of the MDAI yielded acute arrhythmia suppression with low rate of recurrence during follow-up

    Long-Lasting Efficacy of Radio Electric Asymmetric Conveyer Neuromodulation Treatment on Functional Dysmetria, an Adaptive Motor Behavior

    Get PDF
    BackgroundFluctuating asymmetry (FA) is widely defined as the deviation from perfect bilateral symmetry and is considered an epigenetic measure of environmental stress. Rinaldi and Fontani hypothesized that the FA morpho-functional changes originate from an adaptive motor behavior determined by functional alterations in the cerebellum and neural circuits, not caused by a lesion, but induced by environmental stress. They called this phenomenon functional dysmetria (FD). On this premise, they developed the radio electric asymmetric conveyer (REAC) technology, a neuromodulation technology aimed at optimizing the best neuro-psycho-motor strategies in relation to environmental interaction.AimsPrevious studies showed that specific REAC neuro postural optimization (NPO) treatment can induce stable FD recovery. This study aimed to verify the duration of the NPO effect in inducing the stable FD recovery over timeMaterials and methodsData were retrospectively collected from a population of 29,794 subjects who underwent a specific semiological FD assessment and received the NPO treatment, regardless of the pathology referred.ResultsThe analysis of the data collected by the various participants in the study led us to ascertain the disappearance of FD in 100% of the cases treated, with a stability of the result detected up to 18 years after the single administration of the REAC NPO treatment.ConclusionsThe REAC NPO neurobiological modulation treatment consisting of a single administration surprisingly maintains a very long efficacy in the correction of FD. This effect can be explained as the long-lasting capacity of the NPO treatment to induce greater functional efficiency of the brain dynamics as proven in previous studies
    corecore