9,402 research outputs found

    A Hamiltonian functional for the linearized Einstein vacuum field equations

    Full text link
    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained.Comment: 5 pages, accepted in J. Phys.: Conf. Serie

    Symplectic quantization, inequivalent quantum theories, and Heisenberg's principle of uncertainty

    Full text link
    We analyze the quantum dynamics of the non-relativistic two-dimensional isotropic harmonic oscillator in Heisenberg's picture. Such a system is taken as toy model to analyze some of the various quantum theories that can be built from the application of Dirac's quantization rule to the various symplectic structures recently reported for this classical system. It is pointed out that that these quantum theories are inequivalent in the sense that the mean values for the operators (observables) associated with the same physical classical observable do not agree with each other. The inequivalence does not arise from ambiguities in the ordering of operators but from the fact of having several symplectic structures defined with respect to the same set of coordinates. It is also shown that the uncertainty relations between the fundamental observables depend on the particular quantum theory chosen. It is important to emphasize that these (somehow paradoxical) results emerge from the combination of two paradigms: Dirac's quantization rule and the usual Copenhagen interpretation of quantum mechanics.Comment: 8 pages, LaTex file, no figures. Accepted for publication in Phys. Rev.

    Diffusive transport and self-consistent dynamics in coupled maps

    Full text link
    The study of diffusion in Hamiltonian systems has been a problem of interest for a number of years. In this paper we explore the influence of self-consistency on the diffusion properties of systems described by coupled symplectic maps. Self-consistency, i.e. the back-influence of the transported quantity on the velocity field of the driving flow, despite of its critical importance, is usually overlooked in the description of realistic systems, for example in plasma physics. We propose a class of self-consistent models consisting of an ensemble of maps globally coupled through a mean field. Depending on the kind of coupling, two different general types of self-consistent maps are considered: maps coupled to the field only through the phase, and fully coupled maps, i.e. through the phase and the amplitude of the external field. The analogies and differences of the diffusion properties of these two kinds of maps are discussed in detail.Comment: 13 pages, 14 figure

    Energy harvesting from vehicular traffic over speed bumps: A review

    Get PDF
    Energy used by vehicles to slow down in areas of limited speed is wasted. A traffic energy-harvesting device (TEHD) is capable of harvesting vehicle energy when passing over a speed bump. This paper presents a classification of the different technologies used in the existing TEHDs. Moreover, an estimation of the energy that could be harvested with the different technologies and their cost has been elaborated. The energy recovered with these devices could be used for marking and lighting of roads in urban areas, making transportation infrastructures more sustainable and environmentally friendly

    Composite infrared bolometers with Si_3N_4 micromesh absorbers

    Get PDF
    We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20× reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 × 10^(−11) W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the Sunyaev–Zel’dovich Infrared Experiment is ±7% in R (T), ±5% in optical efficiency, and ±4% in G

    Charged particle dynamics in the presence of non-Gaussian L\'evy electrostatic fluctuations

    Full text link
    Full orbit dynamics of charged particles in a 33-dimensional helical magnetic field in the presence of α\alpha-stable L\'evy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The L\'evy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of L\'evy fluctuations. The absolute value of the power law decay exponents are linearly proportional to the L\'evy index α\alpha. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian L\'evy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.Comment: 5 pages, 5 figures. Accepted as a letter in Physics of Plasma

    Restorative Justice in Uruguay : a Change of Lenses in a Reform of Criminal Justice?

    Get PDF

    Understanding the effects of Covid-19 on P2P hospitality: Comparative classification analysis for Airbnb-Barcelona

    Full text link
    [EN] The Covid-19 pandemic has produced significant changes in tourism markets around the world. The large amount of data available on the Airbnb platform, one of the world's largest hosting services, makes it an ideal prospecting place to try to find out what the aftermath of this event has been. This paper explores the entire Airbnb housing stock in the city of Barcelona with the aim of identifying the key characteristics of the homes that have remained operational during the 2019-2021 period. We carried out this analysis by using two classification methods, the random forest and logistic regression with elastic net. The objective is to classify the houses that have remained on the platform against those that have not. Finally, we analyze the results obtained and compare both the general performance of the models and the individual information of each variable through partial dependence plots (PDP). We found a better performance of Random Forest over logistic regression, but not significant differences in the relevant variables chosen by each method. It is worth noting the importance of the geographical location, the number of amenities in the home or the price in the survival of the homes.Argente Del Castillo MartĂ­nez, JP.; Albaladejo, IP. (2022). Understanding the effects of Covid-19 on P2P hospitality: Comparative classification analysis for Airbnb-Barcelona. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat PolitĂšcnica de ValĂšncia. 221-228. https://doi.org/10.4995/CARMA2022.2022.1509122122
    • 

    corecore