71 research outputs found
European admixture on the Micronesian island of Kosrae: lessons from complete genetic information
The architecture of natural variation present in a contemporary population is a result of multiple population genetic forces, including population bottleneck and expansion, selection, drift, and admixture. We seek to untangle the contribution of admixture to genetic diversity on the Micronesian island of Kosrae. Toward this goal, we used a complete genetic approach by combining a dense genome-wide map of 100 000 single-nucleotide polymorphisms (SNPs) with data from uniparental markers from the mitochondrial genome and the nonrecombining portion of the Y chromosome. These markers were typed in ∼3200 individuals from Kosrae, representing 80% of the adult population of the island. We developed novel software that uses SNP data to delineate ancestry for individual segments of the genome. Through this analysis, we determined that 39% of Kosraens have some European ancestry. However, the vast majority of admixed individuals (77%) have European alleles spanning less than 10% of their genomes. Data from uniparental markers show most of this admixture to be male, introduced in the late nineteenth century. Furthermore, pedigree analysis shows that the majority of European admixture on Kosrae is because of the contribution of one individual. This approach shows the benefit of combining information from autosomal and uniparental polymorphisms and provides new methodology for determining ancestry in a population
Modular protein-RNA interactions regulating mRNA metabolism: a role for NMR
Here we review the role played by transient interactions between multi-functional proteins and their RNA targets in the regulation of mRNA metabolism, and we describe the important function of NMR spectroscopy in the study of these systems. We place emphasis on a general approach for the study of different features of modular multi-domain recognition that uses well-established NMR techniques and that has provided important advances in the general understanding of post-transcriptional regulation
BosR (BB0647) Controls the RpoN-RpoS Regulatory Pathway and Virulence Expression in Borrelia burgdorferi by a Novel DNA-Binding Mechanism
In Borrelia burgdorferi (Bb), the Lyme disease spirochete, the alternative σ factor σ54 (RpoN) directly activates transcription of another alternative σ factor, σS (RpoS) which, in turn, controls the expression of virulence-associated membrane lipoproteins. As is customary in σ54-dependent gene control, a putative NtrC-like enhancer-binding protein, Rrp2, is required to activate the RpoN-RpoS pathway. However, recently it was found that rpoS transcription in Bb also requires another regulator, BosR, which was previously designated as a Fur or PerR homolog. Given this unexpected requirement for a second activator to promote σ54-dependent gene transcription, and the fact that regulatory mechanisms among similar species of pathogenic bacteria can be strain-specific, we sought to confirm the regulatory role of BosR in a second virulent strain (strain 297) of Bb. Indeed, BosR displayed the same influence over lipoprotein expression and mammalian infectivity for strain Bb 297 that were previously noted for Bb strain B31. We subsequently found that recombinant BosR (rBosR) bound to the rpoS gene at three distinct sites, and that binding occurred despite the absence of consensus Fur or Per boxes. This led to the identification of a novel direct repeat sequence (TAAATTAAAT) critical for rBosR binding in vitro. Mutations in the repeat sequence markedly inhibited or abolished rBosR binding. Taken together, our studies provide new mechanistic insights into how BosR likely acts directly on rpoS as a positive transcriptional activator. Additional novelty is engendered by the facts that, although BosR is a Fur or PerR homolog and it contains zinc (like Fur and PerR), it has other unique features that clearly set it apart from these other regulators. Our findings also have broader implications regarding a previously unappreciated layer of control that can be involved in σ54–dependent gene regulation in bacteria
Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry
YesBackground.
The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of
syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome,
therefore mass spectrometry studies are needed to bring insights into pathogenicity and
protein expression profiles during infection.
Methodology/Principal Findings.
To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass
spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and
electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS
proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first
account of 106 of these proteins at the protein level. Detected proteins were characterized
according to their predicted biological function and localization; half were allocated into a
wide range of functional categories. Proteins annotated as potential membrane proteins
and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane
localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using
label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance.
Conclusions.
This is the most comprehensive description of the global T. pallidum proteome to date.
These data provide valuable insights into in vivo T. pallidum protein expression, paving the
way for improved understanding of the pathogenicity of this enigmatic organism.This work was supported by the grants from the Flanders Research Foundation, SOFI-B Grant to CRK, http://www.fwo.be/, a Public Health Service Grant from the National Institutes of Health to CEC, (grant # AI-051334), https://www.nih.gov/ and a grant from the Grant Agency of the Czech Republic to DS and MS (P302/12/0574, GP14-29596P), https:// gacr.cz/
Seed oils from non-conventional sources in north-east India: potential feedstock for production of biodiesel
Synergistic effect of natural chickpea leaf exudates acids in heterocyclization: a greener protocol for benzopyran synthesis
The Tp0684 (MglB-2) Lipoprotein of Treponema pallidum: A Glucose-Binding Protein with Divergent Topology
- …
