74 research outputs found

    PAM: Plaid Atoms Model for Bayesian Nonparametric Analysis of Grouped Data

    Full text link
    We consider dependent clustering of observations in groups. The proposed model, called the plaid atoms model (PAM), estimates a set of clusters for each group and allows some clusters to be either shared with other groups or uniquely possessed by the group. PAM is based on an extension to the well-known stick-breaking process by adding zero as a possible value for the cluster weights, resulting in a zero-augmented beta (ZAB) distribution in the model. As a result, ZAB allows some cluster weights to be exactly zero in multiple groups, thereby enabling shared and unique atoms across groups. We explore theoretical properties of PAM and show its connection to known Bayesian nonparametric models. We propose an efficient slice sampler for posterior inference. Minor extensions of the proposed model for multivariate or count data are presented. Simulation studies and applications using real-world datasets illustrate the model's desirable performance

    PAM-HC: A Bayesian Nonparametric Construction of Hybrid Control for Randomized Clinical Trials Using External Data

    Full text link
    It is highly desirable to borrow information from external data to augment a control arm in a randomized clinical trial, especially in settings where the sample size for the control arm is limited. However, a main challenge in borrowing information from external data is to accommodate potential heterogeneous subpopulations across the external and trial data. We apply a Bayesian nonparametric model called Plaid Atoms Model (PAM) to identify overlapping and unique subpopulations across datasets, with which we restrict the information borrowing to the common subpopulations. This forms a hybrid control (HC) that leads to more precise estimation of treatment effects Simulation studies demonstrate the robustness of the new method, and an application to an Atopic Dermatitis dataset shows improved treatment effect estimation

    Identification of orange color-related gene, PhcpcC, in Pyropia haitanensis

    Get PDF
    Pigmentation-related mutations can be utilized to distinguish between differentially colored sectors of chimeric thalli, thereby facilitating the efficient breeding of economically valuable Pyropia/Porphyra seaweed species. However, the specific trait loci and alleles responsible for Pyropia/Porphyra coloration have yet to be identified, which limits the applicability of coloration mutants for breeding and genetic analyses. In this study, to preserve the genetic integrity of the population, only four-colored thalli were considered when constructing the doubled haploid (DH) Pyropia haitanensis population, which consisted of 480 homozygous offspring lines (representing the largest DH Pyropia/Porphyra population). The offspring lines in the DH population exhibited both wild-type colored and orange sectors, with a segregation ratio of approximately 1:1, indicating that the orange coloration was controlled by a single nuclear gene. Through BSA-seq analysis (99% confidence interval), a candidate region of 0.5 Mb was identified in the P. haitanensis genome. Additionally, a non-synonymous SNP [A/G] was detected at base-pair position 481 in the coding region of PhcpcC, which encodes a phycocyanin-associated rod linker protein. This SNP locus was verified in both DH and natural populations, with the wild-type colored lines having an A base and the orange lines having a G base at this locus. Therefore, PhcpcC may be the gene associated with the orange coloration of P. haitanensis. The molecular marker developed in this study can be employed to exploit pigmentation mutants for breeding and genetic analyses of Pyropia/Porphyra species

    UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer

    Full text link
    Traditional channel-wise pruning methods by reducing network channels struggle to effectively prune efficient CNN models with depth-wise convolutional layers and certain efficient modules, such as popular inverted residual blocks. Prior depth pruning methods by reducing network depths are not suitable for pruning some efficient models due to the existence of some normalization layers. Moreover, finetuning subnet by directly removing activation layers would corrupt the original model weights, hindering the pruned model from achieving high performance. To address these issues, we propose a novel depth pruning method for efficient models. Our approach proposes a novel block pruning strategy and progressive training method for the subnet. Additionally, we extend our pruning method to vision transformer models. Experimental results demonstrate that our method consistently outperforms existing depth pruning methods across various pruning configurations. We obtained three pruned ConvNeXtV1 models with our method applying on ConvNeXtV1, which surpass most SOTA efficient models with comparable inference performance. Our method also achieves state-of-the-art pruning performance on the vision transformer model

    Anti-Allergic Inflammatory Activity of Interleukin-37 Is Mediated by Novel Signaling Cascades in Human Eosinophils

    Get PDF
    IL-1 family regulatory cytokine IL-37b can suppress innate immunity and inflammatory activity in inflammatory diseases. In this study, IL-37b showed remarkable in vitro suppression of inflammatory tumor necrosis factor-α, IL-1β, IL-6, CCL2, and CXCL8 production in the coculture of human primary eosinophils and human bronchial epithelial BEAS-2B cells with the stimulation of bacterial toll-like receptor-2 ligand peptidoglycan, while antagonizing the activation of intracellular nuclear factor-κB, PI3K–Akt, extracellular signal-regulated kinase 1/2, and suppressing the gene transcription of allergic inflammation-related PYCARD, S100A9, and CAMP as demonstrated by flow cytometry, RNA-sequencing, and bioinformatics. Results therefore elucidated the novel anti-inflammation-related molecular mechanisms mediated by IL-37b. Using the house dust mite (HDM)-induced humanized asthmatic NOD/SCID mice for preclinical study, intravenous administration of IL-37b restored the normal plasma levels of eosinophil activators CCL11 and IL-5, suppressed the elevated concentrations of Th2 and asthma-related cytokines IL-4, IL-6, and IL-13 and inflammatory IL-17, CCL5, and CCL11 in lung homogenate of asthmatic mice. Histopathological results of lung tissue illustrated that IL-37b could mitigate the enhanced mucus, eosinophil infiltration, thickened airway wall, and goblet cells. Together with similar findings using the ovalbumin- and HDM-induced allergic asthmatic mice further validated the therapeutic potential of IL-37b in allergic asthma. The above results illustrate the novel IL-37-mediated regulation of intracellular inflammation mechanism linking bacterial infection and the activation of human eosinophils and confirm the in vivo anti-inflammatory activity of IL-37b on human allergic asthma

    The Jiao Tong University Spectroscopic Telescope Project

    Full text link
    The Jiao Tong University Spectroscopic Telescope (JUST) is a 4.4-meter f/6.0 segmentedmirror telescope dedicated to spectroscopic observations. The JUST primary mirror is composed of 18 hexagonal segments, each with a diameter of 1.1 m. JUST provides two Nasmyth platforms for placing science instruments. One Nasmyth focus fits a field of view of 10 arcmin and the other has an extended field of view of 1.2 deg with correction optics. A tertiary mirror is used to switch between the two Nasmyth foci. JUST will be installed at a site at Lenghu in Qinghai Province, China, and will conduct spectroscopic observations with three types of instruments to explore the dark universe, trace the dynamic universe, and search for exoplanets: (1) a multi-fiber (2000 fibers) medium-resolution spectrometer (R=4000-5000) to spectroscopically map galaxies and large-scale structure; (2) an integral field unit (IFU) array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multimessenger astronomy; (3) a high-resolution spectrometer (R~100000) designed to identify Jupiter analogs and Earth-like planets, with the capability to characterize the atmospheres of hot exoplanets.Comment: 28 pages, 6 figure
    corecore