7 research outputs found
Down Regulation of a Matrix Degrading Cysteine Protease Cathepsin L, by Acetaldehyde: Role of C/EBPα
BACKGROUND: The imbalance between extra cellular matrix (ECM) synthesis and degradation is critical aspect of various hepatic pathologies including alcohol induced liver fibrosis. This study was carried out to investigate the effect of acetaldehyde on expression of an extra cellular matrix degrading protease cathepsin L (CTSL) in HepG2 cells. METHODOLOGY AND RESULTS: We measured the enzymatic activity, protein and, mRNA levels of CTSL in acetaldehyde treated and untreated cells. The binding of CAAT enhancer binding protein α (C/EBP α) to CTSL promoter and its key role in the transcription from this promoter and conferring responsiveness to acetaldehyde was established by site directed mutagenesis, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assays and siRNA technology. Acetaldehyde treatment significantly decreased CTSL activity and protein levels in HepG2 cells. A similar decrease in the mRNA levels and promoter activity was also observed. This decrease by acetaldehyde was attributed to the fall in the liver enriched transcription factor C/EBP α levels and it's binding to the CTSL promoter. Mutagenesis of C/EBP α binding motifs revealed the key role of this factor in CTSL transcription as well as conferring responsiveness to acetaldehyde. The siRNA mediated silencing of the C/EBP α expression mimicked the effect of acetaldehyde on CTSL levels and its promoter activity. It also abolished the responsiveness of this promoter to acetaldehyde. CONCLUSION: Acetaldehyde down regulates the C/EBP α mediated CTSL expression in hepatic cell lines. The decreased expression of CTSL may at least in part contribute to ECM deposition in liver which is a hallmark of alcoholic liver fibrosis
Collagen Degradation in the Abdominal Aneurysm : A Conspiracy of Matrix Metalloproteinase and Cysteine Collagenases
Growth and rupture of abdominal aortic aneurysms (AAAs) result from increased collagen turnover. Collagen turnover critically depends on specific collagenases that cleave the triple helical region of fibrillar collagen. As yet, the collagenases responsible for collagen degradation in AAAs have not been identified. Increased type I collagen degradation products confirmed collagen turnover in AAAs (median values: <1, 43, and 108 ng/mg protein in control, growing, and ruptured AAAs, respectively). mRNA and protein analysis identified neutrophil collagenase [matrix metalloproteinase (MMP)-8] and cysteine collagenases cathepsin K, L, and S as the principle collagenases in growing and ruptured AAAs. Except for modestly increased MMP-14 mRNA levels, collagenase expression was similar in growing and ruptured AAAs (anterior-lateral wall). Evaluation of posttranslational regulation of protease activity showed a threefold increase in MMP-8, a fivefold increase in cathepsins K and L, and a 30-fold increase in cathepsin S activation in growing and ruptured AAAs. The presence of the osteoclastic proton pump indicated optimal conditions for extracellular cysteine protease activity. Protease inhibitor mRNA expression was similar in AAAs and controls, but AAA protein levels of cystatin C, the principle cysteine protease inhibitor, were profoundly reduced (>80%). We found indications that this secondary deficiency relates to cystatin C degradation by (neutrophil-derived) proteases
Cathepsin L induces proangiogenic changes in human omental microvascular endothelial cells via activation of the ERK1/2 pathway.
Metastasis still remains the major cause of therapeutic failure, poor prognosis and high mortality in epithelial ovarian cancer (EOC) patients. Previously, we showed that EOC cells secrete a range of factors with potential pro-angiogenic activity, in disease-relevant human microvascular omental endothelial cells (HOMECs), including the lysosomal protease cathepsin L (CathL). Thus, the aim of this study was to examine potential pro-proliferative and pro-migratory effects of CathL in HOMECs and the activated signalling pathways, and whether these proangiogenic responses are dependent on CathL-catalytic activity