240 research outputs found

    Hormone-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. Regulation of insulin- and cAMP-dependent activation by phosphorylation.

    Get PDF
    In 32PO4-labeled adipocytes, isoproterenol (ISO) or physiologically relevant concentrations of insulin rapidly increased phosphorylation of a particulate 135-kDa protein which has been identified as a cGMP-inhibited "low Km" cAMP phosphodiesterase (CGI-PDE) by several criteria, including selective immunoprecipitation with anti-CGI-PDE IgG (Degerman, E., Smith, C.J., Tornqvist, H., Vasta, V., Belfrage, P., and Manganiello, V.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 533-537). The time courses and concentration dependences for phosphorylation of CGI-PDE by ISO and insulin correlated with CGI-PDE activation in the presence of these agents; effects of ISO were somewhat more rapid than those of insulin. Adenosine deaminase, which metabolizes the adenylate cyclase inhibitor adenosine, also rapidly induced phosphorylation and activation of CGI-PDE. Phenylisopropyladenosine (an adenosine deaminase-resistant adenosine analog) prevented or reversed both adenosine deaminase-stimulated phosphorylation and activation of CGI-PDE (IC50 approximately 0.2 nM). Incubation of adipocytes with 0.1 nM insulin in the presence of ISO rapidly produced 30-200% greater activation and phosphorylation of CGI-PDE than the expected added effects of insulin and ISO individually; both effects preceded the insulin-induced decreases in protein kinase A activity and inhibition of lipolysis. These and other results indicate that CGI-PDE can be phosphorylated at distinct sites and activated by cAMP-dependent and insulin-dependent serine kinase(s), that the activation state of CGI-PDE reflects its relative phosphorylation state, and that synergistic phosphorylation/activation of CGI-PDE may be important in the antilipolytic action of insulin

    Expression and Regulation of Cyclic Nucleotide Phosphodiesterases in Human and Rat Pancreatic Islets

    Get PDF
    As shown by transgenic mouse models and by using phosphodiesterase 3 (PDE3) inhibitors, PDE3B has an important role in the regulation of insulin secretion in pancreatic β-cells. However, very little is known about the regulation of the enzyme. Here, we show that PDE3B is activated in response to high glucose, insulin and cAMP elevation in rat pancreatic islets and INS-1 (832/13) cells. Activation by glucose was not affected by the presence of diazoxide. PDE3B activation was coupled to an increase as well as a decrease in total phosphorylation of the enzyme. In addition to PDE3B, several other PDEs were detected in human pancreatic islets: PDE1, PDE3, PDE4C, PDE7A, PDE8A and PDE10A. We conclude that PDE3B is activated in response to agents relevant for β-cell function and that activation is linked to increased as well as decreased phosphorylation of the enzyme. Moreover, we conclude that several PDEs are present in human pancreatic islets

    Within the heart's darkness:The role of emotions in Arendt's political thought

    Get PDF
    Interest in the political relevance of the emotions is growing rapidly. In light of this, Hannah Arendt’s claim that the emotions are apolitical has come under renewed fire. But many critics have misunderstood her views on the relationship between individuals, emotions and the political. This paper addresses this issue by reconstructing the conceptual framework through which Arendt understands the emotions. Arendt often describes the heart – where the emotions reside – as a place of darkness. I begin by tracing this metaphor through her work to demonstrate that it is meant to convey the inherently uncertain nature of emotions rather than a devaluation of them. I proceed to challenge the notion that Arendt adopts the Enlightenment dichotomy between reason and emotion. In fact, she rejects both as a basis for politics. However, she does identify some constructive roles for the emotions. I argue that fear is intrinsically connected to courage – the principal political virtue – in Arendt’s philosophy. In light of my discussion, I then reinterpret the role of compassion and pity in On Revolution, concluding that Arendt’s insights can help us avoid the potential pitfalls of the contemporary project to recuperate the emotions in politics

    Phosphodiesterase 3B Is Localized in Caveolae and Smooth ER in Mouse Hepatocytes and Is Important in the Regulation of Glucose and Lipid Metabolism

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) are important regulators of signal transduction processes mediated by cAMP and cGMP. One PDE family member, PDE3B, plays an important role in the regulation of a variety of metabolic processes such as lipolysis and insulin secretion. In this study, the cellular localization and the role of PDE3B in the regulation of triglyceride, cholesterol and glucose metabolism in hepatocytes were investigated. PDE3B was identified in caveolae, specific regions in the plasma membrane, and smooth endoplasmic reticulum. In caveolin-1 knock out mice, which lack caveolae, the amount of PDE3B protein and activity were reduced indicating a role of caveolin-1/caveolae in the stabilization of enzyme protein. Hepatocytes from PDE3B knock out mice displayed increased glucose, triglyceride and cholesterol levels, which was associated with increased expression of gluconeogenic and lipogenic genes/enzymes including, phosphoenolpyruvate carboxykinase, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1c and hydroxyl-3-methylglutaryl coenzyme A reductase. In conclusion, hepatocyte PDE3B is localized in caveolae and smooth endoplasmic reticulum and plays important roles in the regulation of glucose, triglyceride and cholesterol metabolism. Dysregulation of PDE3B could have a role in the development of fatty liver, a condition highly relevant in the context of type 2 diabetes

    Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative capacity or atrogenes

    Get PDF
    Doxorubicin is a widely used and effective chemotherapy drug. However, cardiac and skeletal muscle toxicity of doxorubicin limits its use. Inhibiting myostatin/activin signalling can prevent muscle atrophy, but its effects in chemotherapy-induced muscle wasting are unknown. In the present study we investigated the effects of doxorubicin administration alone or combined with activin receptor ligand pathway blockade by soluble activin receptor IIB (sACVR2B-Fc). Doxorubicin administration decreased body mass, muscle size and bone mineral density/content in mice. However, these effects were prevented by sACVR2B-Fc administration. Unlike in many other wasting situations, doxorubicin induced muscle atrophy without markedly increasing typical atrogenes or protein degradation pathways. Instead, doxorubicin decreased muscle protein synthesis which was completely restored by sACVR2B-Fc. Doxorubicin administration also resulted in impaired running performance without effects on skeletal muscle mitochondrial capacity/function or capillary density. Running performance and mitochondrial function were unaltered by sACVR2B-Fc administration. Tumour experiment using Lewis lung carcinoma cells demonstrated that sACVR2B-Fc decreased the cachectic effects of chemotherapy without affecting tumour growth. These results demonstrate that blocking ACVR2B signalling may be a promising strategy to counteract chemotherapy-induced muscle wasting without damage to skeletal muscle oxidative capacity or cancer treatment.Peer reviewe

    Developing User‐Friendly Habitat Suitability Tools from Regional Stream Fish Survey Data

    Full text link
    We developed user‐friendly fish habitat suitability tools (plots) for fishery managers in Michigan; these tools are based on driving habitat variables and fish population estimates for several hundred stream sites throughout the state. We generated contour plots to show patterns in fish biomass for over 60 common species (and for 120 species grouped at the family level) in relation to axes of catchment area and low‐flow yield (90% exceedance flow divided by catchment area) and also in relation to axes of mean and weekly range of July temperatures. The plots showed distinct patterns in fish habitat suitability at each level of biological organization studied and were useful for quantitatively comparing river sites. We demonstrate how these plots can be used to support stream management, and we provide examples pertaining to resource assessment, trout stocking, angling regulations, chemical reclamation of marginal trout streams, indicator species, instream flow protection, and habitat restoration. These straightforward and effective tools are electronically available so that managers can easily access and incorporate them into decision protocols and presentations.Received April 9, 2010; accepted November 8, 2010Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141005/1/nafm0041.pd

    Agents increasing cyclic GMP amplify 5-HT4-elicited positive inotropic response in failing rat cardiac ventricle

    Get PDF
    Activation of 5-HT4 receptors in failing ventricles elicits a cAMP-dependent positive inotropic response which is mainly limited by the cGMP-inhibitable phosphodiesterase (PDE) 3. However, PDE4 plays an additional role which is demasked by PDE3 inhibition. The objective of this study was to evaluate the effect of cGMP generated by particulate and soluble guanylyl cyclase (GC) on the 5-HT4-mediated inotropic response. Extensive myocardial infarctions were induced by coronary artery ligation in Wistar rats, exhibiting heart failure 6 weeks after surgery. Contractility was measured in left ventricular preparations. Cyclic GMP was measured by EIA. In ventricular preparations, ANP or BNP displayed no impact on 5-HT4-mediated inotropic response. However, CNP increased the 5-HT4-mediated inotropic response as well as the β1-adrenoceptor (β1-AR)-mediated response to a similar extent as PDE3 inhibition by cilostamide. Pretreatment with cilostamide eliminated the effect of CNP. Inhibition of nitric oxide (NO) synthase and soluble GC by l-NAME and ODQ, respectively, attenuated the 5-HT4-mediated inotropic response, whereas the NO donor Sin-1 increased this response. The effects were absent during PDE3 inhibition, suggesting cGMP-dependent inhibition of PDE3. However, in contrast to the effects on the 5-HT4 response, Sin-1 inhibited whereas l-NAME and ODQ enhanced the β1-AR-mediated inotropic response. cGMP generated both by particulate (NPR-B) and soluble GC increases the 5-HT4-mediated inotropic response in failing hearts, probably through inhibition of PDE3. β1-AR and 5-HT4 receptor signalling are subject to opposite regulatory control by cGMP generated by soluble GC in failing hearts. Thus, cGMP from different sources is functionally compartmented, giving differential regulation of different Gs-coupled receptors
    corecore