2,743 research outputs found
Causality and replication in concurrent processes
The replication operator was introduced by Milner for obtaining a simplified description of recursive processes. The standard interleaving semantics denotes the replication of a process P, written !P, a shorthand for its unbound parallel composition, operationally equivalent to the process P | P | …, with P repeated as many times as needed. Albeit the replication mechanism has become increasingly popular, investigations on its causal semantics has been scarce. In fact, the correspondence between replication and unbound parallelism makes it difficult to recover basic properties usually associated with these semantics, such as the so-called concurrency diamond. In this paper we consider the interleaving semantics for the operator proposed by Sangiorgi and Walker, and we show how to refine it in order to capture causality. Furthermore, we prove it coincident with the standard causal semantics for recursive process studied in the literature, for processes defined by means of constant invocations
Distributed current control for multi-three phase synchronous machines in fault conditions
Among challenges and requirements of on-going electrification process and future transportation systems there is demand for arrangements with both increased fault tolerance and reliability. Next aerospace, power-train and automotive systems exploiting new technologies are delving for new features and functionalities. Multi-three phase arrangements are one of these novel approaches where future implementation of aforementioned applications will benefit from. This paper presents and analyses distributed current control design for asymmetrical split-phase schemes composed by symmetrical three phase sections with even number of phases. The proposed design within the dq0 reference frame in nominal, open and short circuit condition of one three-phase system is compared with the vector space decomposition technique and further validated by mean of Matlab/Simulink ~R simulations
Considerations on the effects that core material machining has on an electrical machine's performance
An often-overlooked aspect during the development process of electrical machines, is the validity and accuracy of the machine material properties being used at the design stage. Designers usually consider the data provided by the materials supplier, which is measured on material in an unprocessed state. However, the fact that the machining processes required to produce the finished product (e.g. the stator core) can permanently vary the material properties is very often neglected. This paper therefore deals with and investigates the effects that such processes can have on the overall machine performance. To do this, three sets of material data, based on 1) the materials suppliers’ data, 2) materials data based on conventional characterization methods and 3) materials data based on test samples that include the manufacturing processes, are used to develop three versions of the same baseline machine. The results of these three machines are then compared and the resulting variations of the machine’s performance presented and described.
The chosen baseline machine is a high performance and relatively high speed, aerospace, electrical machine. Special attention is focused on the efficiency maps of the machine as this aspect is highly dependent on the material properties that are the most sensitive to manufacturing processes such as the material’s anhysteretic BH curve and its specific core loss
Two Algebraic Process Semantics for Contextual Nets
We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs
Process algebra modelling styles for biomolecular processes
We investigate how biomolecular processes are modelled in process algebras, focussing on chemical reactions. We consider various modelling styles and how design decisions made in the definition of the process algebra have an impact on how a modelling style can be applied. Our goal is to highlight the often implicit choices that modellers make in choosing a formalism, and illustrate, through the use of examples, how this can affect expressability as well as the type and complexity of the analysis that can be performed
Trade-off analysis and design of a high power density PM machine for flooded industrial pump
This paper presents the trade-off analysis and design of a high power-density machine for industrial pump applications. The developed permanent magnet synchronous machine drives an electric, oil flooded pump. Different slot/pole combination and winding configuration have been investigated in order to identify the optimal combination that satisfies the electromagnetic and thermal constraint while keeping the losses as small as possible. Several strategies such as the use of the Cobalt iron material for the stator core lamination and the adoption of Halbach array have been investigated in this work to improve the performance capabilities of the designed machine. The electromagnetic performances have been evaluated by using a finite element method. Thermal behaviour has been determined using a lumped parameter network. The outcome of the thermal analysis helped to identify the optimal cooling configurations. The final results are presented highlighting the achieved design targets
Design and optimization of a high power density machine for flooded industrial pump
This paper presents the design optimization procedure of a high power-density, permanent magnet synchronous machine for industrial pump applications. The designed machine drives an electric, oil flooded pump. In order to achieve higher torque-density, a fractional slot machine (8 poles, 9 slots) with double layer (concentrated) winding has been selected after a preliminary trade-off study, which considered several slot/pole combinations and winding configurations. The developed machine provides low torque ripple and short end windings, which contribute to lower axial length and higher efficiency. The electromagnetic performances have been evaluated by using finite element method and the lamination geometry has been optimized through a genetic. The final results are presented highlighting the achieved design targets
Axial eccentric SynRel and SPM Motors analytical models validation using 3D finite element
This paper deals with the uniform and non-uniform axial eccentricity analyses of the surface mounted permanent magnet and synchronous reluctance machines. The analyses are carried out using an analytical model for each considered machine. Being the axial eccentricity a 3D physical phenomenon, the standard sliding approach used in the analytical models has been validated through accurate 3D FE simulations. The results presented in this paper verify the effectiveness of the analytical approaches quantifying the results deviations respect to the computational expensive 3D FE simulations. The results also confirms that synchronous reluctance machines show higher radial forces compared to the surface permanent magnet machines for the same eccentricity level, main geometry and operating condition
Expressive Equivalence and Succinctness of Parametrized Automata with respect to Finite Memory Automata
International audienceWe compare parametrized automata, a class of automata recently introduced by the authors, against finite memory automata with non-deterministic assignment, an existing class of automata used to model services. We prove that both classes have the same expressive power, while parametrized automata can be exponentially succinct in some cases. We then prove that deciding simulation preorder for parametrized automata is EXPTIME-complete, extending an earlier result showing it in EXPTIME
Reverse Bisimulations on Stable Configuration Structures
The relationships between various equivalences on configuration structures,
including interleaving bisimulation (IB), step bisimulation (SB) and hereditary
history-preserving (HH) bisimulation, have been investigated by van Glabbeek
and Goltz (and later Fecher). Since HH bisimulation may be characterised by the
use of reverse as well as forward transitions, it is of interest to investigate
forms of IB and SB where both forward and reverse transitions are allowed. We
give various characterisations of reverse SB, showing that forward steps do not
add extra power. We strengthen Bednarczyk's result that, in the absence of
auto-concurrency, reverse IB is as strong as HH bisimulation, by showing that
we need only exclude auto-concurrent events at the same depth in the
configuration
- …
