125 research outputs found

    Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform

    Get PDF
    Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and time-consuming method to assess the lifespan of yeast cells and to isolate differentially aged cells for microscopic snapshots via manual dissection of daughter cells from the larger mother cell. Here, we are unique in achieving continuous and high-resolution microscopic imaging of the entire replicative lifespan of single yeast cells. Our microfluidic dissection platform features an optically prealigned single focal plane and an integrated array of soft elastomer-based micropads, used together to allow for trapping of mother cells, removal of daughter cells, monitoring gradual changes in aging, and unprecedented microscopic imaging of the whole aging process. Using the platform, we found remarkable age-associated changes in phenotypes (e.g., that cells can show strikingly differential cell and vacuole morphologies at the moment of their deaths), indicating substantial heterogeneity in cell aging and death. We envision the microfluidic dissection platform to become a major tool in aging research.

    Targeted hepatitis C antibody testing interventions: a systematic review and meta-analysis

    Get PDF
    Testing for hepatitis C virus (HCV) infection may reduce the risk of liver-related morbidity, by facilitating earlier access to treatment and care. This review investigated the effectiveness of targeted testing interventions on HCV case detection, treatment uptake, and prevention of liver-related morbidity. A literature search identified studies published up to 2013 that compared a targeted HCV testing intervention (targeting individuals or groups at increased risk of HCV) with no targeted intervention, and results were synthesised using meta-analysis. Exposure to a targeted testing intervention, compared to no targeted intervention, was associated with increased cases detected [number of studies (n) = 14; pooled relative risk (RR) 1.7, 95 % CI 1.3, 2.2] and patients commencing therapy (n = 4; RR 3.3, 95 % CI 1.1, 10.0). Practitioner-based interventions increased test uptake and cases detected (n = 12; RR 3.5, 95 % CI 2.5, 4.8; and n = 10; RR 2.2, 95 % CI 1.4, 3.5, respectively), whereas media/information-based interventions were less effective (n = 4; RR 1.5, 95 % CI 0.7, 3.0; and n = 4; RR 1.3, 95 % CI 1.0, 1.6, respectively). This meta-analysis provides for the first time a quantitative assessment of targeted HCV testing interventions, demonstrating that these strategies were effective in diagnosing cases and increasing treatment uptake. Strategies involving practitioner-based interventions yielded the most favourable outcomes. It is recommended that testing should be targeted at and offered to individuals who are part of a population with high HCV prevalence, or who have a history of HCV risk behaviour

    Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae

    Full text link
    Calorie restriction (CR) is often described as the most robust manner to extend lifespan in a large variety of organisms. Hence, considerable research effort is directed toward understanding the mechanisms underlying CR, especially in the yeast Saccharomyces cerevisiae. However, the effect of CR on lifespan has never been systematically reviewed in this organism. Here, we performed a meta-analysis of replicative lifespan (RLS) data published in more than 40 different papers. Our analysis revealed that there is significant variation in the reported RLS data, which appears to be mainly due to the low number of cells analyzed per experiment. Furthermore, we found that the RLS measured at 2% (wt/vol) glucose in CR experiments is partly biased toward shorter lifespans compared with identical lifespan measurements from other studies. Excluding the 2% (wt/vol) glucose experiments from CR experiments, we determined that the average RLS of the yeast strains BY4741 and BY4742 is 25.9 buds at 2% (wt/vol) glucose and 30.2 buds under CR conditions. RLS measurements with a microfluidic dissection platform produced identical RLS data at 2% (wt/vol) glucose. However, CR conditions did not induce lifespan extension. As we excluded obvious methodological differences, such as temperature and medium, as causes, we conclude that subtle method-specific factors are crucial to induce lifespan extension under CR conditions in S. cerevisiae

    A mother's sacrifice: what is she keeping for herself?

    Get PDF
    Individual cells of the budding yeast, Saccharomyces cerevisiae, have a limited life span and undergo a form of senescence termed replicative aging. Replicative life span is defined as the number of daughter cells produced by a yeast mother cell before she ceases dividing. Replicative aging is asymmetric: a mother cell ages but the age of her daughter cells is 'reset' to zero. Thus, one or more senescence factors have been proposed to accumulate asymmetrically between mother and daughter yeast cells and lead to mother-specific replicative senescence once a crucial threshold has been reached. Here we evaluate potential candidates for senescence factors and age-associated phenotypes and discuss potential mechanisms underlying the asymmetry of replicative aging in budding yeast

    Leaf metabolic traits reveal hidden dimensions of plant form and function

    Full text link
    The metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization—a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function

    Leaf metabolic traits reveal hidden dimensions of plant form and function

    Get PDF
    International audienceThe metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization—a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function

    Widespread Expression of BORIS/CTCFL in Normal and Cancer Cells

    Get PDF
    BORIS (CTCFL) is the paralog of CTCF (CCCTC-binding factor; NM_006565), a ubiquitously expressed DNA-binding protein with diverse roles in gene expression and chromatin organisation. BORIS and CTCF have virtually identical zinc finger domains, yet display major differences in their respective C- and N-terminal regions. Unlike CTCF, BORIS expression has been reported only in the testis and certain malignancies, leading to its classification as a “cancer-testis” antigen. However, the expression pattern of BORIS is both a significant and unresolved question in the field of DNA binding proteins. Here, we identify BORIS in the cytoplasm and nucleus of a wide range of normal and cancer cells. We compare the localization of CTCF and BORIS in the nucleus and demonstrate enrichment of BORIS within the nucleolus, inside the nucleolin core structure and adjacent to fibrillarin in the dense fibrillar component. In contrast, CTCF is not enriched in the nucleolus. Live imaging of cells transiently transfected with GFP tagged BORIS confirmed the nucleolar accumulation of BORIS. While BORIS transcript levels are low compared to CTCF, its protein levels are readily detectable. These findings show that BORIS expression is more widespread than previously believed, and suggest a role for BORIS in nucleolar function

    Coordinated Sumoylation and Ubiquitination Modulate EGF Induced EGR1 Expression and Stability

    Get PDF
    Abstract: Background: Human early growth response-1 (EGR1) is a member of the zing-finger family of transcription factors induced by a range of molecular and environmental stimuli including epidermal growth factor (EGF). In a recently published paper we demonstrated that integrin/EGFR cross-talk was required for Egr1 expression through activation of the Erk1/2 and PI3K/Akt/Forkhead pathways. EGR1 activity and stability can be influenced by many different post-translational modifications such as acetylation, phosphorylation, ubiquitination and the recently discovered sumoylation. The aim of this work was to assess the influence of sumoylation on EGF induced Egr1 expression and/or stability. Methods: We modulated the expression of proteins involved in the sumoylation process in ECV304 cells by transient transfection and evaluated Egr1 expression in response to EGF treatment at mRNA and protein levels. Results: We demonstrated that in ECV304 cells Egr1 was transiently induced upon EGF treatment and a fraction of the endogenous protein was sumoylated. Moreover, SUMO-1/Ubc9 over-expression stabilized EGF induced ERK1/2 phosphorylation and increased Egr1 gene transcription. Conversely, in SUMO-1/Ubc9 transfected cells, EGR1 protein levels were strongly reduced. Data obtained from protein expression and ubiquitination analysis, in the presence of the proteasome inhibitor MG132, suggested that upon EGF stimuli EGR1 sumoylation enhanced its turnover, increasing ubiquitination and proteasome mediated degradation. Conclusions: Here we demonstrate that SUMO-1 modification improving EGR1 ubiquitination is involved in the modulation of its stability upon EGF mediated induction

    Expression Profiling of FSHD-1 and FSHD-2 Cells during Myogenic Differentiation Evidences Common and Distinctive Gene Dysregulation Patterns

    Get PDF
    BACKGROUND: Determine global gene dysregulation affecting 4q-linked (FSHD-1) and non 4q-linked (FSHD-2) cells during early stages of myogenic differentiation. This approach has been never applied to FSHD pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By in vitro differentiation of FSHD-1 and FSHD-2 myoblasts and gene chip analysis we derived that gene expression profile is altered only in FSHD-1 myoblasts and FSHD-2 myotubes. The changes seen in FSHD-1 regarded a general defect in cell cycle progression, probably due to the upregulation of myogenic markers PAX3 and MYOD1, and a deficit of factors (SUV39H1 and HMGB2) involved in D4Z4 chromatin conformation. On the other hand, FSHD-2 mytubes were characterized by a general defect in RNA metabolism, protein synthesis and degradation and, to a lesser extent, in cell cycle. Common dysregulations regarded genes involved in response to oxidative stress and in sterol biosynthetic process. Interestingly, our results also suggest that miRNAs might be implied in both FSHD-1 and FSHD-2 gene dysregulation. Finally, in both cell differentiation systems, we did not observe a gradient of altered gene expression throughout the 4q35 chromosome. CONCLUSIONS/SIGNIFICANCE: FSHD-1 and FSHD-2 cells showed, in different steps of myogenic differentiation, a global deregulation of gene expression rather than an alteration of expression of 4q35 specific genes. In general, FSHD-1 and FSHD-2 global gene deregulation interested common and distinctive biological processes. In this regard, defects of cell cycle progression (FSHD-1 and to a lesser extent FSHD-2), protein synthesis and degradation (FSHD-2), response to oxidative stress (FSHD-1 and FSHD-2), and cholesterol homeostasis (FSHD-1 and FSHD-2) may in general impair a correct myogenesis. Taken together our results recapitulate previously reported defects of FSHD-1, and add new insights into the gene deregulation characterizing both FSHD-1 and FSHD-2, in which miRNAs may play a role

    Cancer incidence and mortality trends in France over 1990-2018 for solid tumors: the sex gap is narrowing

    Get PDF
    OBJECTIVE: To analyze trends in cancer incidence and mortality (France, 1990-2018), with a focus on men-women disparities. METHODS: Incidence data stemmed from cancer registries (FRANCIM) and mortality data from national statistics (CĂ©piDc). Incidence and mortality rates were modelled using bidimensional penalized splines of age and year (at diagnosis and at death, respectively). Trends in age-standardized rates were summarized by the average annual percent changes (AAPC) for all-cancers combined, 19 solid tumors, and 8 subsites. Sex gaps were indicated using male-to-female rate ratios (relative difference) and male-to-female rate differences (absolute difference) in 1990 and 2018, for incidence and mortality, respectively. RESULTS: For all-cancers, the sex gap narrowed over 1990-2018 in incidence (1.6 to 1.2) and mortality (2.3 to 1.7). The largest decreases of the male-to-female incidence rate ratio were for cancers of the lung (9.5 to 2.2), lip - oral cavity - pharynx (10.9 to 3.1), esophagus (12.6 to 4.5) and larynx (17.1 to 7.1). Mixed trends emerged in lung and oesophageal cancers, probably explained by differing risk factors for the two main histological subtypes. Sex incidence gaps narrowed due to increasing trends in men and women for skin melanoma (0.7 to 1, due to initially higher rates in women), cancers of the liver (7.4 to 4.4) and pancreas (2.0 to 1.4). Sex incidence gaps narrowed for colon-rectum (1.7 to 1.4), urinary bladder (6.9 to 6.1) and stomach (2.7 to 2.4) driven by decreasing trends among men. Other cancers showed similar increasing incidence trends in both sexes leading to stable sex gaps: thyroid gland (0.3 to 0.3), kidney (2.2 to 2.4) and central nervous system (1.4 to 1.5). CONCLUSION: In France in 2018, while men still had higher risks of developing or dying from most cancers, the sex gap was narrowing. Efforts should focus on avoiding risk factors (e.g., smoking) and developing etiological studies to understand currently unexplained increasing trends
    • …
    corecore