7 research outputs found
Recommended from our members
Experimental observation of plasma formation and current transfer in fine wire expansion experiments.
When several kA pulses are passed through single, fine 25 {micro}m diameter wires, the wire material heats, melts, vaporizes and expands. Initially the voltage across--and current through--a wire increases until an abrupt voltage collapse occurs. After this collapse the voltage remains at a relative small value while the current continues to increase. In order to understand how this early time behavior may affect the subsequent implosion, small-scale experiments at Cornell University's Laboratory of Plasma Studies concentrated on diagnosing expanding single wire dynamics. X-ray backlighting, interferometry and Schlieren imaging as well as current and voltage measurements have been employed. The voltage collapse has been attributed to the formation of plasma around the wire and a transfer of current to this highly conducting coronal plasma. Interferometry has confirmed the plasma formation, but the current transfer has only been postulated. Subsequent experiments on the Z-Facility at Sandia National Laboratories have produced impressive x-ray yields etc
Budesonide Enhances Agonist-Induced Bronchodilation in Human Small Airways by Increasing cAMP Production in Airway Smooth Muscle
The non-genomic mechanisms by which glucocorticoids modulate β2 agonist-induced-bronchodilation remain elusive. Our studies aimed to elucidate mechanisms mediating the beneficial effects of glucocorticoids on agonist-induced bronchodilation. Utilizing human precision cut lung slices (hPCLS), we measured bronchodilation to formoterol, prostaglandin E2 (PGE2), cholera toxin (CTX) or forskolin in the presence and absence of budesonide. Using cultured human airway smooth muscle (HASM), intracellular cAMP was measured in live cells following exposure to formoterol, PGE2, or forskolin in the presence or absence of budesonide. We showed that simultaneous budesonide administration amplified formoterol-induced bronchodilation and attenuated agonist-induced phosphorylation of myosin light chain, a necessary signaling event mediating force generation. In parallel studies, cAMP levels were augmented by simultaneous exposure of HASM cells to formoterol and budesonide. Budesonide, fluticasone and prednisone alone rapidly increased cAMP levels, but steroids alone had little effect on bronchodilation in hPCLS. Bronchodilation induced by PGE2, CTX or forskolin was also augmented by simultaneous exposure to budesonide in hPCLS. Furthermore, HASM cells expressed membrane-bound glucocorticoid receptors that failed to translocate with glucocorticoid stimulation, and that potentially mediated the rapid effects of steroids on β2 agonist-induced bronchodilation. Knockdown of glucocorticoid receptor α had little effect on budesonide-induced and steroid-dependent augmentation of formoterol-induced cAMP generation in HASM. Collectively, these studies suggest that glucocorticoids amplify cAMP-dependent bronchodilation by directly increasing cAMP levels. These studies identify a molecular mechanism by which the combination of glucocorticoids and β2 agonists may augment bronchodilation in diseases such as asthma or chronic obstructive pulmonary disease
Ligand-Related Precursors of Luminescent Carbon Nanofibers Synthesized by Microwave Reaction
Luminescent carbon nanomaterials are important materials for sensing, imaging, and display technologies. This work describes the use of microwave heating for the template-assisted preparation of luminescent carbon nanofibers (CNFs) from the reaction of a range of beverage-related precursors with the nitrogen-rich polyethyleneimine. Highly luminescent robust carbon fibers that were 10 to 30 μm in length and had a diameter of 200 nm were obtained under moderate conditions of temperature (250–260 °C) and a short reaction time (6 min). The high aspect ratio fibers showed wavelength-dependent emission that can be readily imaged using epifluorescence. The development of these multi-emissive one-dimensional (1D) carbon nanomaterials offers potential for a range of applications
Template-Assisted Synthesis of Luminescent Carbon Nanofibers from Beverage-Related Precursors by Microwave Heating
Luminescent carbon nanomaterials are important materials for sensing, imaging, and display technologies. This work describes the use of microwave heating for the template-assisted preparation of luminescent carbon nanofibers (CNFs) from the reaction of a range of beverage-related precursors with the nitrogen-rich polyethyleneimine. Highly luminescent robust carbon fibers that were 10 to 30 μm in length and had a diameter of 200 nm were obtained under moderate conditions of temperature (250–260 °C) and a short reaction time (6 min). The high aspect ratio fibers showed wavelength-dependent emission that can be readily imaged using epifluorescence. The development of these multi-emissive one-dimensional (1D) carbon nanomaterials offers potential for a range of applications