805 research outputs found

    The kiloparsec-scale star formation law at redshift 4: wide-spread, highly efficient star formation in the dust-obscured starburst galaxy GN20

    Get PDF
    We present high-resolution observations of the 880 μ\mum (rest-frame FIR) continuum emission in the z==4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation in this unlensed galaxy on scales of 0.3′′^{\prime\prime}×\times0.2′′^{\prime\prime} (∼\sim2.1×\times1.3 kpc). The observations reveal a bright (16±\pm1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the HST/WFC3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended star formation, and the peak star formation rate surface density (119±\pm8 M⊙_{\odot} yr−1^{-1} kpc−2^{-2}) implies that the star formation in GN20 remains sub-Eddington on scales down to 3 kpc2^2. We find that the star formation efficiency is highest in the central regions of GN20, leading to a resolved star formation law with a power law slope of ΣSFR\Sigma_{\rm SFR} ∼\sim ΣH22.1±1.0\Sigma_{\rm H_2}^{\rm 2.1\pm1.0}, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the star formation law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed star formation efficiency per free-fall time to include the star-forming medium on ∼\simkpc-scales in a galaxy 12 Gyr ago.Comment: 6 pages, 5 figures, accepted to ApJ

    A molecular line scan in the Hubble Deep Field North

    Get PDF
    We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z2. We reach a CO detection limit that is deep enough to detect essentially all z>1 CO lines reported in the literature so far. We have developed and applied different line searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ~2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available SEDs. Two secure CO detections in our scan are identified with star-forming galaxies at z=1.784 and at z=2.047. These galaxies have colors consistent with the `BzK' color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF850.1 at z=5.183. We consider an additional 9 line candidates as high quality. Our observations also provide a deep 3mm continuum map (1-sigma noise level = 8.6 μJy/beam). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the SFR density at 1<z<3, unless high dust temperatures are invoked. The present study represents a first, fundamental step towards an unbiased census of molecular gas in `normal' galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era

    The evolution of Black Hole scaling relations in galaxy mergers

    Full text link
    We study the evolution of black holes (BHs) on the M_BH-sigma and M_BH-M_bulge planes as a function of time in disk galaxies undergoing mergers. We begin the simulations with the progenitor black hole masses being initially below (Delta log M_BH=-2), on (Delta log M_BH=0) and above (Delta log M_BH=0.5) the observed local relations. The final relations are rapidly established after the final coalescense of the galaxies and their BHs. Progenitors with low initial gas fractions (f_gas=0.2) starting below the relations evolve onto the relations (Delta log M_BH=-0.18), progenitors on the relations stay there (Delta log M_BH=0) and finally progenitors above the relations evolve towards the relations, but still remaining above them (Delta log M_BH=0.35). Mergers in which the progenitors have high initial gas fractions (f_gas=0.8) evolve above the relations in all cases (Delta log M_BH=0.5). We find that the initial gas fraction is the prime source of scatter in the observed relations, dominating over the scatter arising from the evolutionary stage of the merger remnants. The fact that BHs starting above the relations do not evolve onto the relations, indicates that our simulations rule out the scenario in which overmassive BHs evolve onto the relations through gas-rich mergers. By implication our simulations thus disfavor the picture in which supermassive BHs develop significantly before their parent bulges.Comment: 6 pages, 4 figures, accepted to ApJL (minor revisions to match accepted version

    Deep CO(1–0) Observations of z = 1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies

    Get PDF
    We present an extremely deep CO(1–0) observation of a confirmed z = 1.62 galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1–0) with signal-to-noise ratio >5\gt 5. Both galaxies have log(M⋆{{ \mathcal M }}_{\star }/M⊙{{ \mathcal M }}_{\odot }) > 11 and are gas rich, with Mmol{{ \mathcal M }}_{\mathrm{mol}}/(M⋆{{ \mathcal M }}_{\star }+Mmol{{ \mathcal M }}_{\mathrm{mol}}) ~ 0.17–0.45. One of these galaxies lies on the star formation rate (SFR)–M⋆{{ \mathcal M }}_{\star } sequence, while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have gas fractions and star formation efficiencies (SFE) comparable to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high-redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched protocluster core, the molecular gas properties of these two galaxies, one of which may be in the process of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in z<1z\lt 1 clusters

    Observations of [OI]63-=μm line emission in main-sequence galaxies at z ∼ 1.5

    Get PDF
    We present Herschel-PACS spectroscopy of four main-sequence star-forming galaxies at z ∼ 1.5. We detect [OI]63-=μm line emission in BzK-21000 at z = 1.5213, and measure a line luminosity, L[OI]63μm=(3.9±0.7)×109 -=L☉. Our PDR modelling of the interstellar medium in BzK-21000 suggests a UV radiation field strength, G ∼ 320G0, and gas density, n ∼ 1800-=cm-3, consistent with previous LVG modelling of the molecular CO line excitation. The other three targets in our sample are individually undetected in these data, and we perform a spectral stacking analysis which yields a detection of their average emission and an [O-=I]63-=μm line luminosity, L[OI]63μm=(1.1±0.2)×109 -=L☉. We find that the implied luminosity ratio, L[OI]63μm/LIR , of the undetected BzK-selected star-forming galaxies broadly agrees with that of low-redshift star-forming galaxies, while BzK-21000 has a similar ratio to that of a dusty star-forming galaxy at z ∼ 6. The high [O-=I]63-=μm line luminosities observed in BzK-21000 and the z ∼ 1-3 dusty and sub-mm luminous star-forming galaxies may be associated with extended reservoirs of low density, cool neutral gas

    Properties of Accretion Flows Around Coalescing Supermassive Black Holes

    Full text link
    What are the properties of accretion flows in the vicinity of coalescing supermassive black holes (SBHs)? The answer to this question has direct implications for the feasibility of coincident detections of electromagnetic (EM) and gravitational wave (GW) signals from coalescences. Such detections are considered to be the next observational grand challenge that will enable testing general relativity in the strong, nonlinear regime and improve our understanding of evolution and growth of these massive compact objects. In this paper we review the properties of the environment of coalescing binaries in the context of the circumbinary disk and hot, radiatively inefficient accretion flow models and use them to mark the extent of the parameter space spanned by this problem. We report the results from an ongoing, general relativistic, hydrodynamical study of the inspiral and merger of black holes, motivated by the latter scenario. We find that correlated EM+GW oscillations can arise during the inspiral phase followed by the gradual rise and subsequent drop-off in the light curve at the time of coalescence. While there are indications that the latter EM signature is a more robust one, a detection of either signal coincidentally with GWs would be a convincing evidence for an impending SBH binary coalescence. The observability of an EM counterpart in the hot accretion flow scenario depends on the details of a model. In the case of the most massive binaries observable by the Laser Interferometer Space Antenna, upper limits on luminosity imply that they may be identified by EM searches out to z~0.1-1. However, given the radiatively inefficient nature of the gas flow, we speculate that a majority of massive binaries may appear as low luminosity AGN in the local universe.Comment: Revised version accepted to Class. Quantum Grav. for proceedings of 8th LISA Symposium. 15 pages, 3 figures, includes changes suggested in referee report

    The First High Redshift Quasar from Pan-STARRS

    Get PDF
    We present the discovery of the first high redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i dropoutout in PS1, confirmed photometrically with the SAO Widefield InfraRed Camera (SWIRC) at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph (TWIN) at the Calar Alto 3.5 m telescope. It has a redshift of 5.73, an AB z magnitude of 19.4, a luminosity of 3.8 x 10^47 erg/s and a black hole mass of 6.9 x 10^9 solar masses. It is a Broad Absorption Line quasar with a prominent Ly-beta peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high redshift quasar search that is projected to discover more than a hundred i dropout quasars, and could potentially find more than 10 z dropout (z > 6.8) quasars.Comment: 8 pages, 7 figure
    • …
    corecore