27 research outputs found

    Mathematical modeling and harmonic analysis of SISFCL

    Get PDF
    Purpose - A saturated iron core superconducting fault current limiter (SISFCL) has an important role to play in the present-day power system, providing effective protection against electrical faults and thus ensuring an uninterrupted supply of electricity to the consumers. Previous mathematical models developed to describe the SISFCL use a simple flux density-magnetic field intensity curve representing the ferromagnetic core. As the magnetic state of the core affects the efficient working of the device, this paper aims to present a novel approach in the mathematical modeling of the device with the inclusion of hysteresis. Design/methodology/approach - The Jiles-Atherton\u27s hysteresis model is utilized to develop the mathematical model of the limiter. The model is numerically solved using MATLAB. To support the validity of model, finite element model (FEM) with similar specifications was simulated. Findings - Response of the limiter based on the developed mathematical model is in close agreement with the FEM simulations. To illustrate the effect of the hysteresis, the responses are compared by using three different hysteresis characteristics. Harmonic analysis is performed and comparison is carried out utilizing fast Fourier transform and continuous wavelet transform. It is observed that the core with narrower hysteresis characteristic not only produces a better current suppression but also creates a higher voltage drop across the DC source. It also injects more harmonics in the system under fault condition. Originality/value - Inclusion of hysteresis in the mathematical model presents a more realistic approach in the transient analysis of the device. The paper provides an essential insight into the effect of the core hysteresis characteristic on the device performance. © 2016 Emerald Publishing Limited.Embargo Period 12 month

    XPS evidence for molecular charge-transfer doping of graphene

    Full text link
    By employing x-ray photoelectron spectroscopy (XPS), we have been able to establish the occurrence of charge-transfer doping in few-layer graphene covered with electron acceptor (TCNE) and donor (TTF) molecules. We have performed quantitative estimates of the extent of charge transfer in these complexes and elucidated the origin of unusual shifts of their Raman G bands and explained the differences in the dependence of conductivity on n- and p-doping. The study unravels the cause of the apparent difference between the charge-transfer doping and electrochemical doping.Comment: 15 pages, 5 figure

    Electric and magnetic polarizabilities of hexagonal Ln2CuTiO6 (Ln=Y, Dy, Ho, Er and Yb)

    Get PDF
    We investigated the rare-earth transition metal oxide series, Ln2CuTiO6 (Ln=Y, Dy, Ho, Er and Yb), crystallizing in the hexagonal structure with non-centrosymmetric P63cm space group for possible occurrences of multiferroic properties. Our results show that while these compounds, except Ln=Y, exhibit a low temperature antiferromagnetic transition due to the ordering of the rare-earth moments, the expected ferroelectric transition is frustrated by the large size difference between Cu and Ti at the B-site. Interestingly, this leads these compounds to attain a rare and unique combination of desirable paraelectric properties with high dielectric constants, low losses and weak temperature and frequency dependencies. First-principles calculations establish these exceptional properties result from a combination of two effects. A significant difference in the MO5 polyhedral sizes for M = Cu and M = Ti suppress the expected co-operative tilt pattern of these polyhedra, required for the ferroelectric transition, leading to relatively large values of the dielectric constant for every compound investigated in this series. Additionally, it is shown that the majority contribution to the dielectric constant arises from intermediate-frequency polar vibrational modes, making it relatively stable against any temperature variation. Changes in the temperature stability of the dielectric constant amongst different members of this series are shown to arise from changes in relative contributions from soft polar modes.Comment: Accepted for publication in Phys. Rev. B (21 pages, 2 Table, 8 Figures

    Engineering room-temperature multiferroicity in Bi and Fe codoped BaTiO3

    Full text link
    Fe doping into BaTiO3, stabilizes the paraelectric hexagonal phase in place of the ferroelectric tetragonal one [P. Pal et al. Phys. Rev. B, 101, 064409 (2020)]. We show that simultaneous doping of Bi along with Fe into BaTiO3 effectively enhances the magnetoelectric (ME) multiferroic response (both ferromagnetism and ferroelectricity) at room-temperature, through careful tuning of Fe valency along with the controlled-recovery of ferroelectric-tetragonal phase. We also report systematic increase in large dielectric constant values as well as reduction in loss tangent values with relatively moderate temperature variation of dielectric constant around room-temperature with increasing Bi doping content in Ba1-xBixTi0.9Fe0.1O3 (0<x<0.1), which makes the higher Bi-Fe codoped sample (x=0.08) promising for the use as room-temperature high-k dielectric material. Interestingly, x=0.08 (Bi-Fe codoped) sample is not only found to be ferroelectrically (~20 times) and ferromagnetically (~6 times) stronger than x=0 (only Fe-doped) at room temperature, but also observed to be better insulating (larger bandgap) with indirect signatures of larger ME coupling as indicated from anomalous reduction of magnetic coercive field with decreasing temperature. Thus, room-temperature ME multiferroicity has been engineered in Bi and Fe codoped BTO (BaTiO3) compounds.Comment: 16 pages, 17 figure

    A Roadmap for Strengthening Panchayati Raj Institutions in Bihar

    No full text
    Preparation of plan for utilization of resources and making appropriate interventions for the wellbeing of the people is an essential component of any government. Planning by the Panchayats is, therefore, very important. Planning at the Gram Panchayat level is even more important since the people can directly participate in preparation and implementation of the plans for their own development. Recommendation of the 14th Finance Commission that the entire amount to be transferred to the Panchayats will be made available to the Gram Panchayats for improving basic services have further increased the importance of planning at that level and involvement of the people in the process

    Charge Ordering Induced Ferromagnetic Insulator: K2Cr8O16

    No full text
    Usually metallicity accompanies ferromagnetism. K2Cr8O16 is one of the less common examples of magnetic materials, exhibiting ferromagnetism in the insulating state. Analyzing the electronic and magnetic properties within first principles electronic structure calculations, we find that the doped electrons due to K induce a charge-ordered and insulating ground state and interestingly also introduce a ferromagnetic coupling between the Cr ions. The primary considerations driving the charge ordering are found to be electrostatic ones with the charge being localized on two Cr atoms that minimize the electrostatic energy. The structural distortion that accompanies the ordering gives rise to a rare example of a charge-order driven ferromagnetic insulator

    Charge ordering induced ferromagnetic insulator: K<sub>2</sub> Cr<sub>8</sub> O<sub>16</sub>

    No full text
    Usually metallicity accompanies ferromagnetism. K<sub>2</sub> Cr<sub>8</sub> O<sub>16</sub> is one of the less common examples of magnetic materials, exhibiting ferromagnetism in the insulating state. Analyzing the electronic and magnetic properties within first principles electronic structure calculations, we find that the doped electrons due to K induce a charge-ordered and insulating ground state and interestingly also introduce a ferromagnetic coupling between the Cr ions. The primary considerations driving the charge ordering are found to be electrostatic ones with the charge being localized on two Cr atoms that minimize the electrostatic energy. The structural distortion that accompanies the ordering gives rise to a rare example of a charge-order driven ferromagnetic insulator
    corecore