619 research outputs found

    Exploring the origins of the Dzyalloshinski-Moria interaction in MnSi

    Get PDF
    By using magnetization and small-angle neutron scattering (SANS) measurements, we have investigated the magnetic behavior of Mn_{1-x}Ir_{x}Si system to explore the effect of increased carrier density and spin-orbit interaction on the magnetic properties of MnSi. We determine estimates of the spin wave stiffness and the Dzyalloshinski-Moria, DM, interaction strength and compare with Mn_{1-x}Co_{x}Si and Mn_{1-x}Fe_{x}Si. Despite the large differences in atomic mass and size of the substituted elements, Mn_{1-x}Co_{x}Si and Mn_{1-x}Ir_{x}Si show nearly identical variations in their magnetic properties with substitution. We find a systematic dependence of the transition temperature, the ordered moment, the helix period and the DM interaction strength with electron count for Mn{1-x}Ir{x}Si, Mn_{1-x}Co_{x}Si, and Mn_{1-x}Fe_{x}Si indicating that the magnetic behavior is primarily dependent upon the additional carrier density rather than on the mass or size of the substituting species. This indicates that the variation in magnetic properties, including the DM interaction strength, are primarily controlled by the electronic structure as Co and Ir are isovalent. Our work suggests that although the rigid band model of electronic structure along with Moira's model of weak itinerant magnetism describe this system surprisingly well, phenomenological models for the DM interaction strength are not adequate to describe this system.Comment: 17 pages, 7 Figure

    Pauli Paramagnetic Effects on Vortices in Superconducting TmNi2B2C

    Get PDF
    The magnetic field distribution around the vortices in TmNi2B2C in the paramagnetic phase was studied experimentally as well as theoretically. The vortex form factor, measured by small-angle neutron scattering, is found to be field independent up to 0.6 Hc2 followed by a sharp decrease at higher fields. The data are fitted well by solutions to the Eilenberger equations when paramagnetic effects due to the exchange interaction with the localized 4f Tm moments are included. The induced paramagnetic moments around the vortex cores act to maintain the field contrast probed by the form factor.Comment: 4 pages, 4 figure

    Unpinning the skyrmion lattice in MnSi: Effect of substitutional disorder

    Get PDF
    By employing magnetization and small angle neutron scattering measurements, we have investigated the behavior of the skyrmion lattice (SKL) and the helical order in MnS i 0 . 992 G a 0 . 008 Our results indicate that the order of the SKL is sensitive to the orientation of an applied magnetic field with respect to the crystal lattice and to variations in the sequence of small temperature and applied magnetic field changes. The disorder caused by the substitution of the heavier element Ga for Si is sufficient to reduce the pinning of the SKL to the underlying crystalline lattice, reducing the propensity for the SKL to be aligned with the crystal lattice. This tendency is most evident when the applied field is not well oriented with respect to the high symmetry axes of the crystal resulting in disorder in the long range SKL while maintaining sharp short range (radial) order. We have also investigated the effect of substituting heavier elements into MnSi on the reorientation process of the helical domains with field cycling in MnS i 0 . 992 G a 0 . 008 and M n 0 . 985 I r 0 . 015 Si A comparison of the reorientation process in these materials with field reduction indicates that the substitution of heavier elements on either Mn or Si sites creates a higher energy barrier for the reorientation of the helical order and for the formation of domains

    Real-Time Microsensor Measurement of Local Metabolic Activities in Ex Vivo Dental Biofilms Exposed to Sucrose and Treated with Chlorhexidine

    Get PDF
    Dental biofilms are characterized by structural and functional heterogeneity. Due to bacterial metabolism, gradients develop and diverse ecological microniches exist. The aims of this study were (i) to determine the metabolic activity of microorganisms in naturally grown dental biofilms ex vivo by measuring dissolved oxygen (DO) and pH profiles with microelectrodes with high spatial resolution and (ii) to analyze the impact of an antimicrobial chlorhexidine (CHX) treatment on microbial physiology during stimulation by sucrose in real time. Biofilms were cultivated on standardized human enamel surfaces in vivo. DO and pH profiles were measured in a flow cell system in sterile human saliva, after sucrose addition (10%), again after alternative treatment of the sucrose exposed biofilms with CHX (0.2%) for 1 or 10 min or after being killed with paraformaldehyde (4%). Biofilm structure was visualized by vitality staining with confocal microscopy. With saliva as the sole nutrient source oxygen consumption was high within the superficial biofilm layers rendering deeper layers (>220 μm) anoxic. Sucrose addition induced the thickness of the anaerobic zone to increase with a concurrent decrease in pH (7.1 to 4.4). CHX exposure reduced metabolic activity and microbial viability at the biofilm surface and drove metabolic activity deeper into the biofilm. CHX treatment led to a reduced viability at the biofilm surface with minor influence on overall biofilm physiology after 1 min; even after 10 min there was measurable respiration and fermentation inside the biofilm. However, the local microenvironment was more aerated, less acidogenic, and presumably less pathogenic

    Observation of a mesoscopic magnetic modulation in chiral Mn1/3NbS2

    Get PDF
    We have investigated the structural, magnetic, thermodynamic, and charge transport properties of Mn1/3NbS2 single crystals through x-ray and neutron diffraction, magnetization, specific heat, magnetoresistance, and Hall effect measurements. Mn1/3NbS2 displays a magnetic transition at TC ~ 45 K with highly anisotropic behavior expected for a hexagonal structured material. Below TC, neutron diffraction reveals increased scattering near the structural Bragg peaks having a wider Q-dependence along the c-axis than the nuclear Bragg peaks. This indicates helimagnetism with a long pitch length of ~250 nm (or a wavevector q~0.0025 {\AA}-1) along the c-axis. This q is substantially smaller than that found for the helimagnetic state in isostructural Cr1/3NbS2 (0.015 {\AA}-1). Specific heat capacity measurements confirm a second-order magnetic phase transition with a substantial magnetic contribution that persists to low temperature. The large low-temperature specific heat capacity is consistent with a large density of low-lying magnetic excitations that are likely associated with topologically interesting magnetic modes. Changes to the magnetoresistance, the magnetization, and the magnetic neutron diffraction, which become more apparent below 20 K, imply a modification in the character of the magnetic ordering corresponding to the magnetic contribution to the specific heat capacity. These observations signify a more complex magnetic structure both at zero and finite fields for Mn1/3NbS2 than for the well-investigated Cr1/3NbS2.Comment: 22 pages, 7 figure

    A Hybrid Lagrangian Variation Method for Bose-Einstein Condensates in Optical Lattices

    Get PDF
    Solving the Gross--Pitaevskii (GP) equation describing a Bose--Einstein condensate (BEC) immersed in an optical lattice potential can be a numerically demanding task. We present a variational technique for providing fast, accurate solutions of the GP equation for systems where the external potential exhibits rapid varation along one spatial direction. Examples of such systems include a BEC subjected to a one--dimensional optical lattice or a Bragg pulse. This variational method is a hybrid form of the Lagrangian Variational Method for the GP equation in which a hybrid trial wavefunction assumes a gaussian form in two coordinates while being totally unspecified in the third coordinate. The resulting equations of motion consist of a quasi--one--dimensional GP equation coupled to ordinary differential equations for the widths of the transverse gaussians. We use this method to investigate how an optical lattice can be used to move a condensate non--adiabatically.Comment: 16 pages and 1 figur
    corecore