76 research outputs found

    Lock-in thermography as a rapid and reproducible thermal characterization method for magnetic nanoparticles

    Get PDF
    Lock-in thermography (LIT) is a sensitive imaging technique generally used in engineering and materials science (e.g. detecting defects in composite materials). However, it has recently been expanded for investigating the heating power of nanomaterials, such as superparamagnetic iron oxide nanoparticles (SPIONs). Here we implement LIT as a rapid and reproducible method that can evaluate the heating potential of various sizes of SPIONs under an alternating magnetic field (AMF), as well as the limits of detection for each particle size. SPIONs were synthesized via thermal decomposition and stabilized in water via a ligand transfer process. Thermographic measurements of SPIONs were made by stimulating particles of varying sizes and increasing concentrations under an AMF. Furthermore, a commercially available SPION sample was included as an external reference. While the size dependent heating efficiency of SPIONs has been previously described, our objective was to probe the sensitivity limits of LIT. For certain size regimes it was possible to detect signals at concentrations as low as 0.1 mg Fe/mL. Measuring at different concentrations enabled a linear regression analysis and extrapolation of the limit of detection for different size nanoparticles

    Combining magnetic hyperthermia and dual T1/T2 MR imaging using highly versatile iron oxide nanoparticles

    Full text link
    [EN] Magnetic hyperthermia and magnetic resonance imaging (MRI) are two of the most important biomedical applications of magnetic nanoparticles (MNPs). However, the design of MNPs with good heating performance for hyperthermia and dual T1/T2 contrast for MRI remains a considerable challenge. In this work, ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) are synthesized through a simple one-step methodology. A post-synthetic purification strategy has been implemented in order to separate discrete nanoparticles from aggregates and unstable nanoparticles, leading to USPIONs that preserve chemical and colloidal stability for extended periods of time. The optimized nanoparticles exhibit high saturation magnetization and show good heating efficiency in magnetic hyperthermia experiments. Remarkably, the evaluation of the USPIONs as MRI contrast agents revealed that the nanoparticles are also able to provide significant dual T1/T2 signal enhancement. These promising results demonstrate that USPIONs are excellent candidates for the development of theranostic nanodevices with potential application in both hyperthermia and dual T1/T2 MR imaging.We are grateful to the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (Projects PROMETEO/2018/024 and PROMETEOII/2014/047) for financial support. S. S. C. is grateful to the Spanish MEC for his FPU grant. JG acknowledges funding from FCT and the ERDF through NORTE2020 through the project Self-reporting immunestimulating formulation for on-demand cancer therapy with real-time treatment response monitoring (028052).Sánchez-Cabezas, S.; Montes-Robles, R.; Gallo, J.; Sancenón Galarza, F.; Martínez-Máñez, R. (2019). Combining magnetic hyperthermia and dual T1/T2 MR imaging using highly versatile iron oxide nanoparticles. Dalton Transactions. 48(12):3883-3892. https://doi.org/10.1039/c8dt04685aS388338924812Lee, J.-H., Jang, J., Choi, J., Moon, S. H., Noh, S., Kim, J., … Cheon, J. (2011). Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology, 6(7), 418-422. doi:10.1038/nnano.2011.95Hauser, A. K., Wydra, R. J., Stocke, N. A., Anderson, K. W., & Hilt, J. Z. (2015). Magnetic nanoparticles and nanocomposites for remote controlled therapies. Journal of Controlled Release, 219, 76-94. doi:10.1016/j.jconrel.2015.09.039González, B., Ruiz-Hernández, E., Feito, M. J., López de Laorden, C., Arcos, D., Ramírez-Santillán, C., … Vallet-Regí, M. (2011). Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitro gene magnetofection. Journal of Materials Chemistry, 21(12), 4598. doi:10.1039/c0jm03526bGallo, J., Long, N. J., & Aboagye, E. O. (2013). Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chemical Society Reviews, 42(19), 7816. doi:10.1039/c3cs60149hBoyer, C., Whittaker, M. R., Bulmus, V., Liu, J., & Davis, T. P. (2010). The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Materials, 2(1), 23-30. doi:10.1038/asiamat.2010.6Wáng, Y. X. J., & Idée, J.-M. (2017). A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quantitative Imaging in Medicine and Surgery, 7(1), 88-122. doi:10.21037/qims.2017.02.09Blanco-Andujar, C., Walter, A., Cotin, G., Bordeianu, C., Mertz, D., Felder-Flesch, D., & Begin-Colin, S. (2016). Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine, 11(14), 1889-1910. doi:10.2217/nnm-2016-5001Shin, T.-H., Choi, Y., Kim, S., & Cheon, J. (2015). Recent advances in magnetic nanoparticle-based multi-modal imaging. Chemical Society Reviews, 44(14), 4501-4516. doi:10.1039/c4cs00345dBusquets, M. A., Estelrich, J., & Sánchez-Martín, M. J. (2015). Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. International Journal of Nanomedicine, 1727. doi:10.2147/ijn.s76501Lee, N., & Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev., 41(7), 2575-2589. doi:10.1039/c1cs15248cWang, G., Zhang, X., Skallberg, A., Liu, Y., Hu, Z., Mei, X., & Uvdal, K. (2014). One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Nanoscale, 6(5), 2953. doi:10.1039/c3nr05550gKim, B. H., Lee, N., Kim, H., An, K., Park, Y. I., Choi, Y., … Hyeon, T. (2011). Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-ResolutionT1Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society, 133(32), 12624-12631. doi:10.1021/ja203340uNegussie, A. H., Yarmolenko, P. S., Partanen, A., Ranjan, A., Jacobs, G., Woods, D., … Dreher, M. R. (2011). Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. International Journal of Hyperthermia, 27(2), 140-155. doi:10.3109/02656736.2010.528140Hervault, A., & Thanh, N. T. K. (2014). Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 6(20), 11553-11573. doi:10.1039/c4nr03482aKumar, C. S. S. R., & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63(9), 789-808. doi:10.1016/j.addr.2011.03.008Deatsch, A. E., & Evans, B. A. (2014). Heating efficiency in magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials, 354, 163-172. doi:10.1016/j.jmmm.2013.11.006Zhang, J., Li, X., Rosenholm, J. M., & Gu, H. (2011). Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 361(1), 16-24. doi:10.1016/j.jcis.2011.05.038COROT, C., ROBERT, P., IDEE, J., & PORT, M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging☆. Advanced Drug Delivery Reviews, 58(14), 1471-1504. doi:10.1016/j.addr.2006.09.013Gonzales, M., Mitsumori, L. M., Kushleika, J. V., Rosenfeld, M. E., & Krishnan, K. M. (2010). Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127. Contrast Media & Molecular Imaging, 5(5), 286-293. doi:10.1002/cmmi.391Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108(6), 2064-2110. doi:10.1021/cr068445eKiss, L. B., Söderlund, J., Niklasson, G. A., & Granqvist, C. G. (1999). New approach to the origin of lognormal size distributions of nanoparticles. Nanotechnology, 10(1), 25-28. doi:10.1088/0957-4484/10/1/006De Palma, R., Peeters, S., Van Bael, M. J., Van den Rul, H., Bonroy, K., Laureyn, W., … Maes, G. (2007). Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible. Chemistry of Materials, 19(7), 1821-1831. doi:10.1021/cm0628000Roonasi, P., & Holmgren, A. (2009). A Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) study of oleate adsorbed on magnetite nano-particle surface. Applied Surface Science, 255(11), 5891-5895. doi:10.1016/j.apsusc.2009.01.031Yan, K., Li, H., Wang, X., Yi, C., Zhang, Q., Xu, Z., … Whittaker, A. K. (2014). Self-assembled magnetic luminescent hybrid micelles containing rare earth Eu for dual-modality MR and optical imaging. J. Mater. Chem. B, 2(5), 546-555. doi:10.1039/c3tb21381aGarland, E. R., Rosen, E. P., Clarke, L. I., & Baer, T. (2008). Structure of submonolayer oleic acid coverages on inorganic aerosol particles: evidence of island formation. Physical Chemistry Chemical Physics, 10(21), 3156. doi:10.1039/b718013fSmolensky, E. D., Park, H.-Y. E., Zhou, Y., Rolla, G. A., Marjańska, M., Botta, M., & Pierre, V. C. (2013). Scaling laws at the nanosize: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. Journal of Materials Chemistry B, 1(22), 2818. doi:10.1039/c3tb00369hKodama, R. . (1999). Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 200(1-3), 359-372. doi:10.1016/s0304-8853(99)00347-9Bean, C. P., & Livingston, J. D. (1959). Superparamagnetism. Journal of Applied Physics, 30(4), S120-S129. doi:10.1063/1.2185850Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific Reports, 7(1). doi:10.1038/s41598-017-09897-5Roca, A. G., Morales, M. P., O’Grady, K., & Serna, C. J. (2006). Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology, 17(11), 2783-2788. doi:10.1088/0957-4484/17/11/010Coey, J. M. D. (1971). Noncollinear Spin Arrangement in Ultrafine Ferrimagnetic Crystallites. Physical Review Letters, 27(17), 1140-1142. doi:10.1103/physrevlett.27.1140Linderoth, S., Hendriksen, P. V., Bo/dker, F., Wells, S., Davies, K., Charles, S. W., & Mo/rup, S. (1994). On spin‐canting in maghemite particles. Journal of Applied Physics, 75(10), 6583-6585. doi:10.1063/1.356902Daou, T. J., Grenèche, J. M., Pourroy, G., Buathong, S., Derory, A., Ulhaq-Bouillet, C., … Begin-Colin, S. (2008). Coupling Agent Effect on Magnetic Properties of Functionalized Magnetite-Based Nanoparticles. Chemistry of Materials, 20(18), 5869-5875. doi:10.1021/cm801405nSerna, C. J., Bødker, F., Mørup, S., Morales, M. P., Sandiumenge, F., & Veintemillas-Verdaguer, S. (2001). Spin frustration in maghemite nanoparticles. Solid State Communications, 118(9), 437-440. doi:10.1016/s0038-1098(01)00150-8Laurent, S., Dutz, S., Häfeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1-2), 8-23. doi:10.1016/j.cis.2011.04.003N. T. Thanh , Magnetic Nanoparticles From Fabrication to Clinical Applications , CRC Press , Boca Raton , 2012Hergt, R., & Dutz, S. (2007). Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials, 311(1), 187-192. doi:10.1016/j.jmmm.2006.10.1156Dong-Hyun Kim, Thai, Y. T., Nikles, D. E., & Brazel, C. S. (2009). Heating of Aqueous Dispersions Containing MnFe2O4{\hbox{MnFe}}_{2}{\hbox{O}}_{4} Nanoparticles by Radio-Frequency Magnetic Field Induction. IEEE Transactions on Magnetics, 45(1), 64-70. doi:10.1109/tmag.2008.2005329Rosensweig, R. E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252, 370-374. doi:10.1016/s0304-8853(02)00706-0D. Ortega and Q. A.Pankhurst , in Nanoscience: Volume 1: Nanostructures through Chemistry , ed. P. O'Brien , The Royal Society of Chemistry , Cambridge , 2013 , vol. 1 , pp. 60–88Wildeboer, R. R., Southern, P., & Pankhurst, Q. A. (2014). On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal of Physics D: Applied Physics, 47(49), 495003. doi:10.1088/0022-3727/47/49/495003Guibert, C., Dupuis, V., Peyre, V., & Fresnais, J. (2015). Hyperthermia of Magnetic Nanoparticles: Experimental Study of the Role of Aggregation. The Journal of Physical Chemistry C, 119(50), 28148-28154. doi:10.1021/acs.jpcc.5b07796Henoumont, C., Laurent, S., & Vander Elst, L. (2009). How to perform accurate and reliable measurements of longitudinal and transverse relaxation times of MRI contrast media in aqueous solutions. Contrast Media & Molecular Imaging, 4(6), 312-321. doi:10.1002/cmmi.294Biju, S., Gallo, J., Bañobre‐López, M., Manshian, B. B., Soenen, S. J., Himmelreich, U., … Parac‐Vogt, T. N. (2018). A Magnetic Chameleon: Biocompatible Lanthanide Fluoride Nanoparticles with Magnetic Field Dependent Tunable Contrast Properties as a Versatile Contrast Agent for Low to Ultrahigh Field MRI and Optical Imaging in Biological Window. Chemistry – A European Journal, 24(29), 7388-7397. doi:10.1002/chem.201800283Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M., & Weinmann, H.-J. (2005). Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths. Investigative Radiology, 40(11), 715-724. doi:10.1097/01.rli.0000184756.66360.d3Guldris, N., Argibay, B., Kolen’ko, Y. V., Carbó-Argibay, E., Sobrino, T., Campos, F., … Rivas, J. (2016). Influence of the separation procedure on the properties of magnetic nanoparticles: Gaining in vitro stability and T1–T2 magnetic resonance imaging performance. Journal of Colloid and Interface Science, 472, 229-236. doi:10.1016/j.jcis.2016.03.040Hu, F., & Zhao, Y. S. (2012). Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. Nanoscale, 4(20), 6235. doi:10.1039/c2nr31865bDaldrup-Link, H. E. (2017). Ten Things You Might Not Know about Iron Oxide Nanoparticles. Radiology, 284(3), 616-629. doi:10.1148/radiol.2017162759Hu, F., Jia, Q., Li, Y., & Gao, M. (2011). Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrastT1- andT2-weighted magnetic resonance imaging. Nanotechnology, 22(24), 245604. doi:10.1088/0957-4484/22/24/245604Tegafaw, T., Xu, W., Ahmad, M. W., Baeck, J. S., Chang, Y., Bae, J. E., … Lee, G. H. (2015). Dual-modeT1andT2magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, andin vivoapplication. Nanotechnology, 26(36), 365102. doi:10.1088/0957-4484/26/36/365102Im, G. H., Kim, S. M., Lee, D.-G., Lee, W. J., Lee, J. H., & Lee, I. S. (2013). Fe3O4/MnO hybrid nanocrystals as a dual contrast agent for both T1- and T2-weighted liver MRI. Biomaterials, 34(8), 2069-2076. doi:10.1016/j.biomaterials.2012.11.05

    Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: A pilot study

    No full text
    INTRODUCTION: Acute intermittent hypoxia (AIH) enhances lower extremity motor function in humans with chronic incomplete spinal cord injury (SCI). AIH-induced spinal plasticity is inhibited by systemic inflammation in animal models. Since SCI is frequently associated with systemic inflammation in humans, we tested the hypothesis that pretreatment with the anti-inflammatory agent ibuprofen enhances the effects of AIH. METHODS: A randomized, double-blinded, placebo-controlled crossover design was used. Nine adults (mean age 51.1 ± 13.1 years) with chronic motor-incomplete SCI (7.7 ± 6.3 years post-injury) received a single dose of ibuprofen (800 mg) or placebo, 90 minutes prior to AIH. For AIH, 9% O2 for 90 seconds was interspersed with 21% O2 for 60 seconds. Maximal voluntary ankle plantar flexion isometric torque was assessed prior to, and at 0, 30, and 60 minutes post-AIH. Surface electromyography (EMG) of plantar flexor muscles was also recorded. RESULTS: Torque increased significantly after AIH at 30 (P = 0.007; by ∼20%) and 60 (P < 0.001; by ∼30%) minutes post-AIH versus baseline. Ibuprofen did not augment the effects of AIH. EMG activity did not increase significantly after AIH; however, there was a significant association between increases in torque and EMG in both gastrocnemius (R2 = 0.17, P < 0.005) and soleus (R2 = 0.17, P < 0.005) muscles. CONCLUSIONS: AIH systematically increased lower extremity torque in individuals with chronic incomplete SCI, but there was no significant effect of ibuprofen pretreatment. Our study re-confirms the ability of AIH to enhance leg strength in persons with chronic incomplete SCI
    corecore