1,443 research outputs found

    Towards Understanding Photodegradation Pathways in Lignins:The Role of Intramolecular Hydrogen Bonding in Excited States

    Get PDF
    The photoinduced dynamics of the lignin building blocks syringol, guaiacol, and phenol were studied using time-resolved ion yield spectroscopy and velocity map ion imaging. Following irradiation of syringol and guaiacol with a broad-band femtosecond ultraviolet laser pulse, a coherent superposition of out-of-plane OH torsion and/or OMe torsion/flapping motions is created in the first excited 1ππ* (S1) state, resulting in a vibrational wavepacket, which is probed by virtue of a dramatic nonplanar → planar geometry change upon photoionization from S1 to the ground state of the cation (D0). Any similar quantum beat pattern is absent in phenol. In syringol, the nonplanar geometry in S1 is pronounced enough to reduce the degree of intramolecular H bonding (between OH and OMe groups), enabling H atom elimination from the OH group. For guaiacol, H bonding is preserved after excitation, despite the nonplanar geometry in S1, and prevents O–H bond fission. This behavior affects the propensities for forming undesired phenoxyl radical sites in these three lignin chromophores and provides important insight into their relative “photostabilities” within the larger biopolymer

    The Effects Of Water Utility Pricing On Low Income Consumers

    Get PDF
    This study reviews ten water utilities in Florida utilizing current pricing models to determine how municipal utilities approach affordability.  Water is no longer a commodity that can be taken for granted as the effects on the family budget has risen considerably in the past couple of decades. Increasing costs in capital, debt, personnel, chemicals, retrieval, and production have dramatically increased the price of water.  Municipalities are faced with diminishing resources, escalating costs, and the need to consider those less fortunate when determining utility pricing.  This research reviews programs available to utilities to offset the effect on capital requirements if municipalities adapt a low income friendly pricing model.  Ten Florida municipalities are examined utilizing data from the 2012 Water and Wastewater Rate Study conducted for the American Water Works Association.   Additionally, affordability programs for all ten municipalities are reviewed.

    Book Reviews

    Get PDF

    Book Reviews

    Get PDF

    HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance <it>in vivo </it>and alveolar epithelial monolayer permeability <it>in vitro</it>. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined.</p> <p>Results</p> <p>HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats <it>in vitro </it>with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization.</p> <p>Conclusion</p> <p>Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.</p

    Characterizing Mode Anharmonicity and Huang–Rhys Factors Using Models of Femtosecond Coherence Spectra

    Get PDF
    Femtosecond laser pulses readily produce coherent quantum beats in transient–absorption spectra. These oscillatory signals often arise from molecular vibrations and therefore may contain information about the excited-state potential energy surface near the Franck–Condon region. Here, by fitting the measured spectra of two laser dyes to microscopic models of femtosecond coherence spectra (FCS) arising from molecular vibrations, we classify coherent quantum-beat signals as fundamentals or overtones and quantify their Huang–Rhys factors and anharmonicity values. We discuss the extracted Huang–Rhys factors in the context of quantum-chemical computations. This work solidifies the use of FCS for analysis of coherent quantum beats arising from molecular vibrations, which will aid studies of molecular aggregates and photosynthetic proteins

    Comparing the impact on COVID-19 mortality of self-imposed behavior change and of government regulations across 13 countries.

    Get PDF
    OBJECTIVE: Countries have adopted different approaches, at different times, to reduce the transmission of coronavirus disease 2019 (COVID-19). Cross-country comparison could indicate the relative efficacy of these approaches. We assess various nonpharmaceutical interventions (NPIs), comparing the effects of voluntary behavior change and of changes enforced via official regulations, by examining their impacts on subsequent death rates. DATA SOURCES: Secondary data on COVID-19 deaths from 13 European countries, over March-May 2020. STUDY DESIGN: We examine two types of NPI: the introduction of government-enforced closure policies and self-imposed alteration of individual behaviors in the period prior to regulations. Our proxy for the latter is Google mobility data, which captures voluntary behavior change when disease salience is sufficiently high. The primary outcome variable is the rate of change in COVID-19 fatalities per day, 16-20 days after interventions take place. Linear multivariate regression analysis is used to evaluate impacts. DATA COLLECTION/EXTRACTION METHODS: publicly available. PRINCIPAL FINDINGS: Voluntarily reduced mobility, occurring prior to government policies, decreases the percent change in deaths per day by 9.2 percentage points (pp) (95% confidence interval [CI] 4.5-14.0 pp). Government closure policies decrease the percent change in deaths per day by 14.0 pp (95% CI 10.8-17.2 pp). Disaggregating government policies, the most beneficial for reducing fatality, are intercity travel restrictions, canceling public events, requiring face masks in some situations, and closing nonessential workplaces. Other sub-components, such as closing schools and imposing stay-at-home rules, show smaller and statistically insignificant impacts. CONCLUSIONS: NPIs have substantially reduced fatalities arising from COVID-19. Importantly, the effect of voluntary behavior change is of the same order of magnitude as government-mandated regulations. These findings, including the substantial variation across dimensions of closure, have implications for the optimal targeted mix of government policies as the pandemic waxes and wanes, especially given the economic and human welfare consequences of strict regulations

    Groundwater Development in Arid Basins

    Get PDF
    Summary: Groundwater development frequently provides a means whereby tremendous new economic opportunities are opened up. If supplies are overdrawn (mined) the ensuing regional economy may be able to affort replacements from more costly sources. In the United States the Salt River Valley of Arizona and the valleys of California provide examples. Two cases are treated in this paper, Israel and West Pakistan. In Israel, besides furnishing more than half of the basic source of water suppply, groundwater development provides opportunity for both quantity and quality management, which makes possible use of surface supplies and reclaimed sewage as firm rather than marginal sources. This development will permit the total water resources of this small country, where agricultural production ranks among the world\u27s most efficient, to be utilized effectively down to almost the last drop by the mid 1970\u27s. Israel must then look to desalted water from the sea for further expansion of its overall water supply. In West Pakistan a combination of level terrain and leaky canals since about 1890 led to threatened waterlogging and salinity of more than 25 million acreas of irrigated land, even though supplies were less than half adequate for good productivity. By the 1950\u27s low yields and increasing population threatened starvation. However, initiation of groundwater development, first by the government and later by pricate entreprise, has, since 1960, let to construction of 3,500 governmental tube wells of about 3 cfs capacity and 30,000 private tube wells of slightly less than 1 cfs capacity. Results have been dramatic. Agricultural production and use of fertilizer are rapidly increasing, and opening of well development of pricate enterprise is providing the irrigator with benefits of free competition for his water custom which he did not previously enjoy. Ultimately, besides providing full supplies for an estimated 26 to 30 million acrea, drainage and salinity problems will be mitigated if about 50 million acre-feet are pumped each year from groundwater including about 28 million acre-feet to be mined from a reserve of about 1,900 million acre-feet. With some difficult surface storage development due to terrain, mining may eventually be reduced. Through an eventual technological solution for the continuing overdraft is not now in sight, perhaps an economy may be built which can affort such a solution when the time comes

    Striking the Right Balance of Intermolecular Coupling for High-Efficiency Singlet Fission

    Get PDF
    Singlet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood. One of the most elementary suggestions, which has yet to be tested, is that an appropriately balanced coupling is necessary to ensure overall highly efficient singlet fission; that is, the coupling needs to be strong enough so that the first step is fast and efficient, yet weak enough to ensure the independent behavior of the resultant triplets. In this work, we show how high overall singlet-to-triplet conversion efficiencies can be achieved in singlet fission by ensuring that the triplets comprising the triplet pair behave as independently as possible. We show that side chain sterics govern local packing in amorphous pentacene derivative nanoparticles, and that this in turn controls both the rate at which triplet pairs form and the rate at which they decay. We show how compact side chains and stronger couplings promote a triplet pair that effectively couples to the ground state, whereas bulkier side chains promote a triplet pair that appears more like two independent and long-lived triplet excitations. Our results show that the triplet pair is not emissive, that its decay is best viewed as internal conversion rather than triplet–triplet annihilation, and perhaps most critically that, in contrast to a number of recent suggestions, the triplets comprising the initially formed triplet pair cannot be considered independently. This work represents a significant step toward better understanding intermediates in singlet fission, and how molecular packing and couplings govern overall triplet yields
    • …
    corecore