532 research outputs found

    Bacterial Cellulose Templates for Nano-Hydroxyapatite Fibre Synthesis

    Get PDF
    Guided bone regeneration is a medical procedure which induces in vivo re-growth of bone using membranes and osteopromoting fillers. In this work, bacterial cellulose fibers were isolated and used as a basis for biomimetic hydroxyapatite growth, with the ultimate goal of producing GBR filler materials. Acetobacter xylinum generated BC using various carbon sources. Fibers were treated with phosphoric acid to phosphorylate functional groups and preconditioned with calcium to nucleate the HA. Simulated body fluid (SBF) furthered the growth. Over 14 days, the product was characterized via EDX, SEM, FTIR, and XRD. The effect of media composition, phosphorylation time, pretreatment, and structure on the resultant composites was examined. Samples possessed a Ca-to-P ratio as high as 1.45±0.92, encompassing the HA standard of 1.67. Higher ratios were observed on the surface of pellicles, implying crystal deposition. Results indicate potential in three-dimensional samples and a basis for further BC-HA scaffold optimization for GBR

    An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection.

    Get PDF
    Continued development of high-performance and cost-effective diagnostic tools is vital for improving infectious disease treatment and transmission control. For nucleic acid diagnostics, moving beyond enzyme-mediated amplification assays will be critical in reducing the time and complexity of diagnostic technologies. Further, an emerging area of threat, in which diagnostics will play an increasingly important role, is antimicrobial resistance (AMR) in bacterial infections. Herein, we present an amplification-free electrochemical CRISPR/Cas biosensor utilizing silver metallization (termed E-Si-CRISPR) to detect methicillin-resistant (MRSA). Using a custom-designed guide RNA (gRNA) targeting the gene of MRSA, the Cas12a enzyme allows highly sensitive and specific detection when employed with silver metallization and square wave voltammetry (SWV). Our biosensor exhibits excellent analytical performance, with detection and quantitation limits of 3.5 and 10 fM, respectively, and linearity over five orders of magnitude (from 10 fM to 0.1 nM). Importantly, we observe no degradation in performance when moving from buffer to human serum samples, and achieve excellent selectivity for MRSA in human serum in the presence of other common bacteria. The E-Si-CRISPR method shows significant promise as an ultrasensitive field-deployable device for nucleic acid-based diagnostics, without requiring nucleic acid amplification. Finally, adjustment to a different disease target can be achieved by simple modification of the gRNA protospacer. [Abstract copyright: This journal is © The Royal Society of Chemistry.

    Sulfur gas exchange in Sphagnum-dominated wetlands

    Get PDF
    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S was investigated by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in trophic status. The effects of inorganic S input on the production and emission of gaseous S were also investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, fens within the Experimental Lakes Area (ELA) in Ontario, Canada and in freshwater and marine tundra. Emissions were determined using Teflon enclosures, gas cryotrapping methods, and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed. Dissolved gases were determined by gas stripping followed by GC

    The Association Between Sedentary Behaviors During Weekdays and Weekend with Change in Body Composition in Young Adults

    Get PDF
    Background: High sedentary time has been considered an important chronic disease risk factor but there is only limited information on the association of specific sedentary behaviors on weekdays and weekend-days with body composition. The present study examines the prospective association of total sedentary time and specific sedentary behaviors during weekdays and the weekend with body composition in young adults. Methods: A total of 332 adults (50% male; 27.7 ±3.7 years) were followed over a period of 1 year. Time spent sedentary, excluding sleep (SED), and in physical activity (PA) during weekdays and weekend-days was objectively assessed every 3 months with a multisensor device over a period of at least 8 days. In addition, participants reported sitting time, TV time and non-work related time spent at the computer separately for weekdays and the weekend. Fat mass and fat free mass were assessed via dual x-ray absorptiometry and used to calculate percent body fat (%BF). Energy intake was estimated based on TDEE and change in body composition. Results: Cross-sectional analyses showed a significant correlation between SED and body composition (0.18 ≤ r ≤ 0.34). Associations between body weight and specific sedentary behaviors were less pronounced and significant during weekdays only (r ≤ 0.16). Nevertheless, decrease in SED during weekends, rather than during weekdays, was significantly associated with subsequent decrease in %BF (β = 0.06, p \u3c0.01). After adjusting for PA and energy intake, results for SED were no longer significant. Only the association between change in sitting time during weekends and subsequent %BF was independent from change in PA or energy intake (β%BF = 0.04, p = 0.01), while there was no significant association between TV or computer time and subsequent body composition. Conclusions: The stronger AIMS Public Health Volume 3, Issue 2, 375-388. prospective association between sedentary behavior during weekends with subsequent body composition emphasizes the importance of leisure time behavior in weight management

    The Association Between Sedentary Behaviors During Weekdays and Weekend with Change in Body Composition in Young Adults

    Get PDF
    Background: High sedentary time has been considered an important chronic disease risk factor but there is only limited information on the association of specific sedentary behaviors on weekdays and weekend-days with body composition. The present study examines the prospective association of total sedentary time and specific sedentary behaviors during weekdays and the weekend with body composition in young adults. Methods: A total of 332 adults (50% male; 27.7 ±3.7 years) were followed over a period of 1 year. Time spent sedentary, excluding sleep (SED), and in physical activity (PA) during weekdays and weekend-days was objectively assessed every 3 months with a multisensor device over a period of at least 8 days. In addition, participants reported sitting time, TV time and non-work related time spent at the computer separately for weekdays and the weekend. Fat mass and fat free mass were assessed via dual x-ray absorptiometry and used to calculate percent body fat (%BF). Energy intake was estimated based on TDEE and change in body composition. Results: Cross-sectional analyses showed a significant correlation between SED and body composition (0.18 ≤ r ≤ 0.34). Associations between body weight and specific sedentary behaviors were less pronounced and significant during weekdays only (r ≤ 0.16). Nevertheless, decrease in SED during weekends, rather than during weekdays, was significantly associated with subsequent decrease in %BF (β = 0.06, p \u3c0.01). After adjusting for PA and energy intake, results for SED were no longer significant. Only the association between change in sitting time during weekends and subsequent %BF was independent from change in PA or energy intake (β%BF = 0.04, p = 0.01), while there was no significant association between TV or computer time and subsequent body composition. Conclusions: The stronger AIMS Public Health Volume 3, Issue 2, 375-388. prospective association between sedentary behavior during weekends with subsequent body composition emphasizes the importance of leisure time behavior in weight management

    Bright conjugated polymer nanoparticles containing a biodegradable shell produced at high yields and with tuneable optical properties by a scalable microfluidic device

    Get PDF
    This study compares the performance of a microfluidic technique and a conventional bulk method to manufacture conjugated polymer nanoparticles (CPNs) embedded within a biodegradable poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG5K–PLGA55K) matrix. The influence of PEG5K–PLGA55K and conjugated polymers cyano-substituted poly(p-phenylene vinylene) (CN-PPV) and poly(9,9-dioctylfluorene-2,1,3-benzothiadiazole) (F8BT) on the physicochemical properties of the CPNs was also evaluated. Both techniques enabled CPN production with high end product yields (?70–95%). However, while the bulk technique (solvent displacement) under optimal conditions generated small nanoparticles (∼70–100 nm) with similar optical properties (quantum yields ∼35%), the microfluidic approach produced larger CPNs (140–260 nm) with significantly superior quantum yields (49–55%) and tailored emission spectra. CPNs containing CN-PPV showed smaller size distributions and tuneable emission spectra compared to F8BT systems prepared under the same conditions. The presence of PEG5K–PLGA55K did not affect the size or optical properties of the CPNs and provided a neutral net electric charge as is often required for biomedical applications. The microfluidics flow-based device was successfully used for the continuous preparation of CPNs over a 24 hour period. On the basis of the results presented here, it can be concluded that the microfluidic device used in this study can be used to optimize the production of bright CPNs with tailored properties with good reproducibility

    Combinatorial microfluidic droplet engineering for biomimetic material synthesis

    Get PDF
    Although droplet-based systems are used in a wide range of technologies, opportunities for systematically customizing their interface chemistries remain relatively unexplored. This article describes a new microfluidic strategy for rapidly tailoring emulsion droplet compositions and properties. The approach utilizes a simple platform for screening arrays of droplet-based microfluidic devices and couples this with combinatorial selection of the droplet compositions. Through the application of genetic algorithms over multiple screening rounds, droplets with target properties can be rapidly generated. The potential of this method is demonstrated by creating droplets with enhanced stability, where this is achieved by selecting carrier fluid chemistries that promote titanium dioxide formation at the droplet interfaces. The interface is a mixture of amorphous and crystalline phases, and the resulting composite droplets are biocompatible, supporting in vitro protein expression in their interiors. This general strategy will find widespread application in advancing emulsion properties for use in chemistry, biology, materials and medicine

    The role of optimization in the human dynamics of tasks execution

    Full text link
    In order to explain the empirical evidence that the dynamics of human activity may not be well modeled by Poisson processes, a model based on queuing processes were built in the literature \cite{bar05}. The main assumption behind that model is that people execute their tasks based on a protocol that execute firstly the high priority item. In this context, the purpose of this letter is to analyze the validity of that hypothesis assuming that people are rational agents that make their decisions in order minimize the cost of keeping non-executed tasks on the list. Therefore, we build and solve analytically a dynamic programming model with two priority types of tasks and show that the validity of this hypothesis depends strongly on the structure of the instantaneous costs that a person has to face if a given task is kept on the list for more than one step. Moreover, one interesting finding is that in one of the situations the protocol used to execute the tasks generates complex one dimensional dynamics
    • …
    corecore