311 research outputs found
Virtual Teaching Together: Engaging Parents and Young Children in STEM Activities
INTRODUCTION: Early informal learning experiences are essential for sparking long-term interest in science, technology, engineering, and math (STEM). In a prior study, we found more promising parent involvement outcomes when families of young children were provided with STEM family education events along with home STEM activity kits compared to providing workshops alone. This study was a conceptual replication using the same program-
METHODS: Museum informal science educators introduced four units via virtual video chat sessions linked to 12 hands-on STEM activities that were mailed to families randomly assigned to the treatment group. Half of the families were assigned to a waitlist control group that received a portion of the virtual program after the posttest. Participants included 60 families with children aged 3 to 5 years from diverse linguistic and socioeconomic backgrounds.
RESULTS: Our results indicate no significant group differences in the primary outcome of parents\u27 involvement in informal STEM but a small, positive effect size (ES = 0.18) that was similar in magnitude to the prior, in-person study. Although parents mostly perceived the remote delivery as convenient and the materials as engaging for their child, there were no significant program impacts on children\u27s general science interests (ES = -0.19).
DISCUSSION: Despite the convenience, parents reported time was a barrier to doing STEM activities at home. Parents with lower education levels were less likely to attend, suggesting virtual approaches are not sufficient for ensuring broad access to family engagement programs for populations underrepresented in STEM
Bioturbation and particle transport in Carolina slope sediments: A radiochemical approach
In situ tracer experiments investigated short-term sediment mixing processes at two Carolina continental margin sites (water depth = 850 m) characterized by different organic C fluxes, 234Th mixing coefficients (Db) and benthic assemblages. Phytoplankton, slope sediment, and sand-sized glass beads tagged with 210Pb, 113Sn, and 228Th, respectively, were placed via submersible at the sediment-water interface at both field sites (Site I off Cape Fear, and Site III off Cape Hatteras). Experimental plots were sampled at 0, 1.5 days, and 90 days after tracer emplacement to examine short-term, vertical transport. Both sites are initially dominated by nonlocal mixing. Transport to the bottom of the surface mixed layer at both sites occurs more rapidly than 234Th-based Db values predict; after 1.5 days, tagged particles were observed 5 cm below the sediment-water interface at Site I and 12 cm below at Site III. Impulse tracer profiles after 90 days at Site III exhibit primarily diffusive distributions, most likely due to a large number of random, nonlocal mixing events. The Db values determined from 90-day particle tagging experiments are comparable to those obtained from naturally occurring 234Th profiles (~100-day time scales) from nearby locations. The agreement between impulse tracer mixing coefficients and steady-state natural tracer mixing coefficients suggests that the diffusive analogue for bioturbation on monthly time scales is a realistic and useful approach. Tracer profiles from both sites exhibit some degree of particle selective mixing, but the preferential transport of the more labile carbon containing particles only occurred 30% of the time. Consequently, variations in the extent to which age-dependent mixing occurs in marine sediments may depend on factors such as faunal assemblage and organic carbon flux
Effective Connectivity in the Default Mode Network after Paediatric Traumatic Brain Injury
Children who experience a traumatic brain injury (TBI) are at elevated risk for a range of negative cognitive and neuropsychological outcomes. Identifying which children are at greatest risk for negative outcomes can be difficult due to the heterogeneity of TBI. To address this barrier, the current study applied a novel method of characterizing brain connectivity networks, Bayesian multi-subject vector autoregressive modelling (BVAR-connect), which used white matter integrity as priors to evaluate effective connectivity-the time-dependent relationship in functional magnetic resonance imaging (fMRI) activity between two brain regions-within the default mode network (DMN). In a prospective longitudinal study, children ages 8-15 years with mild to severe TBI underwent diffusion tensor imaging and resting state fMRI 7 weeks after injury; post-concussion and anxiety symptoms were assessed 7 months after injury. The goals of this study were to (1) characterize differences in positive effective connectivity of resting-state DMN circuitry between healthy controls and children with TBI, (2) determine if severity of TBI was associated with differences in DMN connectivity and (3) evaluate whether patterns of DMN effective connectivity predicted persistent post-concussion symptoms and anxiety. Healthy controls had unique positive connectivity that mostly emerged from the inferior temporal lobes. In contrast, children with TBI had unique effective connectivity among orbitofrontal and parietal regions. These positive orbitofrontal-parietal DMN effective connectivity patterns also differed by TBI severity and were associated with persisting behavioural outcomes. Effective connectivity may be a sensitive neuroimaging marker of TBI severity as well as a predictor of chronic post-concussion symptoms and anxiety
The ORF59 DNA polymerase processivity factor homologs of Old World primate RV2 rhadinoviruses are highly conserved nuclear antigens expressed in differentiated epithelium in infected macaques
Background ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication. Results We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1) and three species of macaques (RFHVMm, RFHVMn and RFHVMf), and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively). We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus) and MneRV2 (pig-tail), with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero) in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses Conclusion The ORF59 DNA polymerase processivity factor homologs of the Old World primate RV1 and RV2 rhadinovirus lineages are phylogenetically distinct yet demonstrate similar expression and localization characteristics that correlate with their use as lineage-specific markers for permissive infection and virus replication. These studies will aid in the characterization of virus activation from latency to the replicative state, an important step for understanding the biology and transmission of rhadinoviruses, such as KSHV
Parenting Influences on Frontal Lobe Gray Matter and Preterm Toddlers\u27 Problem-Solving Skills
Children born preterm often face challenges with self-regulation during toddlerhood. This study examined the relationship between prematurity, supportive parent behaviors, frontal lobe gray matter volume (GMV), and emotion regulation (ER) among toddlers during a parent-assisted, increasingly complex problem-solving task, validated for this age range. Data were collected from preterm toddlers (n = 57) ages 15–30 months corrected for prematurity and their primary caregivers. MRI data were collected during toddlers’ natural sleep. The sample contained three gestational groups: 22–27 weeks (extremely preterm; EPT), 28–33 weeks (very preterm; VPT), and 34–36 weeks (late preterm; LPT). Older toddlers became more compliant as the Tool Task increased in difficulty, but this pattern varied by gestational group. Engagement was highest for LPT toddlers, for older toddlers, and for the easiest task condition. Parents did not differentiate their support depending on task difficulty or their child’s age or gestational group. Older children had greater frontal lobe GMV, and for EPT toddlers only, more parent support was related to larger right frontal lobe GMV. We found that parent support had the greatest impact on high birth risk (≤27 gestational weeks) toddler brain development, thus early parent interventions may normalize preterm child neurodevelopment and have lasting impacts
U.S. Pacific Marine Mammal Stock Assessments
Under the 1994 amendments to the Marine Mammal Protection Act, the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) were required to produce stock assessment reports for all marine mammal stocks in waters within the U.S. Exclusive Economic Zone. This document contains the stock assessment reports for the U.S. Pacific marine mammal stocks under NMFS jurisdiction. Marine mammal species which are under the management jurisdiction of the USFWS are not included in this report. A separate report containing background, guidelines for preparation, and .a summary of all stock assessment reports is available from the NMFS Office of Protected Resources. This report was prepared by staff of the Southwest Fisheries Science Center, NMFS and the Alaska Fisheries Science Center, NMFS. The information presented here was compiled primarily from published sources, but additional unpublished information was included where it contributed to the assessments. The authors wish to thanks the members of the Pacific Scientific Review Group for their valuable contributions and constructive criticism: Hannah Bernard, Robin Brown, Mark Fraker, Doyle Hanan, John Heyning, Steve Jeffries, Katherine Ralls, Michael Scott, and Terry Wright. Their comments greatly improved the quality of these reports, We also thanks the Marine Mammal Commission, The Humane Society of the United States, The Marine Mammal Center, The Center for Marine Conservation, and Friends of the Sea Otter for their careful reviews and thoughtful comments. Special thanks to Paul Wade of the Office of Protected Resources for his exhaustive review and comments, which greatly enhanced the consistency and technical quality of the reports. Any ommissions or errors are the sole responsibility of the authors. This is a working document and individual stock assessment reports will be updated as new information becomes available and as changes to marine mammal stocks and fisheries occur; therefore, each stock assessment report is intended to be a stand alone document. The authors solicit any new information or comments which would improve future stock assessment reports. This is Southwest Fisheries Science Center Technical Memorandum NOAA-TM-NMFS-SWFSC- 219, July 1995. 11
Oceanic distribution of inorganic germanium relative to silicon: Germanium discrimination by diatoms
Seventeen inorganic germanium and silicon concentration profiles collected from the Atlantic, southwest Pacific, and Southern oceans are presented. A plot of germanium concentration versus silicon concentration produced a near-linear line with a slope of 0.760 × 10−6 (±0.004) and an intercept of 1.27 (±0.24) pmol L−1 (r2 = 0.993, p < 0.001). When the germanium-to-silicon ratios (Ge/Si) were plotted versus depth and/or silicon concentrations, higher values are observed in surface waters (low in silicon) and decreased with depth (high in silicon). Germanium-to-silicon ratios in diatoms (0.608–1.03 × 10−6) and coupled seawater samples (0.471–7.46 × 10−6) collected from the Southern Ocean are also presented and show clear evidence for Ge/Si fractionation between the water and opal phases. Using a 10 box model (based on PANDORA), Ge/Si fractionation was modeled using three assumptions: (1) no fractionation, (2) fractionation using a constant distribution coefficient (KD) between the water and solid phase, and (3) fractionation simulated using Michaelis-Menten uptake kinetics for germanium and silicon via the silicon uptake system. Model runs indicated that only Ge/Si fractionation based on differences in the Michaelis-Menten uptake kinetics for germanium and silicon can adequately describe the data. The model output using this fractionation process produced a near linear line with a slope of 0.76 × 10−6 and an intercept of 0.92 (±0.28) pmol L−1, thus reflecting the oceanic data set. This result indicates that Ge/Si fractionation in the global ocean occurs as a result of subtle differences in the uptake of germanium and silicon via diatoms in surface waters
Seasonal variations in the Amazon plume-related atmospheric carbon sink
The Amazon River plume is a highly seasonal feature that can reach more than 3000 km across the tropical Atlantic Ocean, and cover ∼2 million km². Ship observations show that its seasonal presence significantly reduces sea surface salinity and inorganic carbon. In the western tropical North Atlantic during April–May 2003, plume-influenced stations exhibited surface DIC concentrations lowered by as much as 563 μmol C kg⁻¹ (∼28%) and pCO₂ as low as 201 μatm. We combine our data with other data sets to understand the annual uptake and seasonal variability of the plume-related CO₂ sink. Using flux estimates from all seasons with monthly plume areas determined by satellite, we calculate the annual carbon uptake by the outer plume alone (28 < S < 35) to be 15 ± 6 TgC yr⁻¹. Diazotroph-supported net community production enhanced the air-sea CO₂ disequilibrium by 100x and reversed the typical CO₂ outgassing from the tropical North Atlantic. The carbon sink in the Amazon plume depends on climate-sensitive conditions that control river hydrology, CO₂ solubility, and gas exchange
Genetic Evidence Highlights Potential Impacts of By-Catch to Cetaceans
Incidental entanglement in fishing gear is arguably the most serious threat to many populations of small cetaceans, judging by the alarming number of captured animals. However, other aspects of this threat, such as the potential capture of mother-offspring pairs or reproductive pairs, could be equally or even more significant but have rarely been evaluated. Using a combination of demographic and genetic data we provide evidence that i) Franciscana dolphin pairs that are potentially reproductive and mother-offspring pairs form temporal bonds, and ii) are entangled simultaneously. Our results highlight potential demographic and genetic impacts of by-catch to cetacean populations: the joint entanglement of mother-offspring or reproductive pairs, compared to random individuals, might exacerbate the demographic consequences of by-catch, and the loss of groups of relatives means that significant components of genetic diversity could be lost together. Given the social nature of many odontocetes (toothed cetaceans), we suggest that these potential impacts could be rather general to the group and therefore by-catch could be more detrimental than previously considered
- …