3,604 research outputs found

    Nonlinear Force-Free Field Modeling of the Solar Magnetic Carpet and Comparison with SDO/HMI and Sunrise/IMaX Observations

    Full text link
    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet, which continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager (HMI) on the \textit{Solar Dynamics Observatory} (\textit{SDO}), and the Imaging Magnetograph eXperiment (IMaX) instrument on the \textit{Sunrise} balloon-borne observatory, as time dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce time series of three-dimensional (3D) nonlinear force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate, and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.Comment: Accepted for publication in The Astrophysical Journal (13 pages, 10 figures

    Management of Elbow Dislocations in the National Football League.

    Get PDF
    Background: Although much literature exists regarding the treatment and management of elbow dislocations in the general population, little information is available regarding management in the athletic population. Furthermore, no literature is available regarding the postinjury treatment and timing of return to play in the contact or professional athlete. Purpose: To review the clinical course of elbow dislocations in professional football players and determine the timing of return to full participation. Study Design: Case series; Level of evidence, 4. Methods: All National Football League (NFL) athletes with elbow dislocations from 2000 through 2011 who returned to play during the season were identified from the NFL Injury Surveillance System (NFL ISS). Roster position, player activity, use of external bracing, and clinical course were reviewed. Mean number of days lost until full return to play was determined for players with elbow dislocations who returned in the same season. Results: From 2000 to 2011, a total of 62 elbow dislocations out of 35,324 injuries were recorded (0.17%); 40 (64.5%) dislocations occurred in defensive players, 12 (19.4%) were in offensive players; and 10 (16.1%) were during special teams play. Over half of the injuries (33/62, 53.2%) were sustained while tackling, and 4 (6.5%) patients required surgery. A total of 47 (75.8%) players who sustained this injury were able to return in the same season. For this group, the mean number of days lost in players treated conservatively (45/47) was 25.1 days (median, 23.0 days; range, 0.0-118 days), while that for players treated operatively (2/47) was 46.5 days (median, 46.5 days; range, 29-64 days). Mean return to play based on player position was 25.8 days for defensive players (n = 28; median, 21.5 days; range, 3.0-118 days), 24.1 days for offensive players (n = 11; median, 19 days; range, 2.0-59 days), and 25.6 days for special teams players (n = 8; median, 25.5 days; range, 0-44 days). Conclusion: Elbow dislocations comprise less than a half of a percent of all injuries sustained in the NFL. Most injuries occur during the act of tackling, with the majority of injured athletes playing a defensive position. Players treated nonoperatively missed a mean of 25.1 days, whereas those managed operatively missed a mean of 46.5 days

    Relaxation of classical many-body hamiltonians in one dimension

    Full text link
    The relaxation of Fourier modes of hamiltonian chains close to equilibrium is studied in the framework of a simple mode-coupling theory. Explicit estimates of the dependence of relevant time scales on the energy density (or temperature) and on the wavenumber of the initial excitation are given. They are in agreement with previous numerical findings on the approach to equilibrium and turn out to be also useful in the qualitative interpretation of them. The theory is compared with molecular dynamics results in the case of the quartic Fermi-Pasta-Ulam potential.Comment: 9 pag. 6 figs. To appear in Phys.Rev.

    PB1-F2 Finder: scanning influenza sequences for PB1-F2 encoding RNA segments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PB1-F2 is a major virulence factor of influenza A. This protein is a product of an alternative reading frame in the PB1-encoding RNA segment 2. Its presence of is dictated by the presence or absence of premature stop codons. This virulence factor is present in every influenza pandemic and major epidemic of the 20th century. Absence of PB1-F2 is associated with mild disease, such as the 2009 H1N1 (“swine flu”).</p> <p>Results</p> <p>The analysis of 8608 segment 2 sequences showed that only 8.5% have been annotated for the presence of PB1-F2. Our analysis indicates that 75% of segment 2 sequences are likely to encode PB1-F2. Two major populations of PB1-F2 are of lengths 90 and 57 while minor populations include lengths 52, 63, 79, 81, 87, and 101. Additional possible populations include the lengths of 59, 69, 81, 95, and 106. Previously described sequences include only lengths 57, 87, and 90. We observed substantial variation in PB1-F2 sequences where certain variants show up to 35% difference to well-defined reference sequences. Therefore this dataset indicates that there are many more variants that need to be functionally characterized.</p> <p>Conclusions</p> <p>Our web-accessible tool PB1-F2 Finder enables scanning of influenza sequences for potential PB1-F2 protein products. It provides an initial screen and annotation of PB1-F2 products. It is accessible at <url>http://cvc.dfci.harvard.edu/pb1-f2</url>.</p

    High-resolution Observations of the Shock Wave Behavior for Sunspot Oscillations with the Interface Region Imaging Spectrograph

    Full text link
    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mgii 2796.35 {\AA}, Cii 1335.71 {\AA}, and Si iv 1393.76 {\AA} lines in the sunspot. The intensity change is about 30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of about 10 km/s in Si iv. In the umbra the Si iv oscillation lags those of Cii and Mgii by about 3 and 12 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si iv, whereas the intensity enhancement slightly precedes the maximum blueshift in Mgii. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.Comment: 5 figures, in ApJ. Correction of time lags (correct values are 3 and 12s) made on June 17 201

    Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    Get PDF
    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent

    The Substructure of the Solar Corona Observed in the Hi-C Telescope

    Get PDF
    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore calculate how the intensity scales from a low-resolution (AIA) pixels to high-resolution (Hi-C) pixels for both the dynamic events and "background" emission (meaning, the steady emission over the 5 minutes of data acquisition time). We find there is no evidence of substructure in the background corona; the intensity scales smoothly from low-resolution to high-resolution Hi-C pixels. In transient events, however, the intensity observed with Hi-C is, on average, 2.6 times larger than observed with AIA. This increase in intensity suggests that AIA is not resolving these events. This result suggests a finely structured dynamic corona embedded in a smoothly varying background

    Prevalence of Small-scale Jets from the Networks of the Solar Transition Region and Chromosphere

    Full text link
    As the interface between the Sun's photosphere and corona, the chromosphere and transition region play a key role in the formation and acceleration of the solar wind. Observations from the Interface Region Imaging Spectrograph reveal the prevalence of intermittent small-scale jets with speeds of 80-250 km/s from the narrow bright network lanes of this interface region. These jets have lifetimes of 20-80 seconds and widths of 300 km or less. They originate from small-scale bright regions, often preceded by footpoint brightenings and accompanied by transverse waves with ~20 km/s amplitudes. Many jets reach temperatures of at least ~100000 K and constitute an important element of the transition region structures. They are likely an intermittent but persistent source of mass and energy for the solar wind.Comment: Figs 1-4 & S1-S5; Movies S1-S8; published in Science, including the main text and supplementary materials. Reference: H. Tian, E. E. DeLuca, S. R. Cranmer, et al., Science 346, 1255711 (2014

    Characterization of the Inner Knot of the Crab: The Site of the Gamma-ray Flares?

    Get PDF
    One of the most intriguing results from the gamma-ray instruments in orbit has been the detection of powerful flares from the Crab Nebula. These flares challenge our understanding of pulsar wind nebulae and models for particle acceleration. We report on the portion of a multiwavelength campaign using Keck, HST, and Chandra concentrating on a small emitting region, the Crab's inner knot, located a fraction of an arcsecond from the pulsar. We find that the knot's radial size, tangential size, peak flux, and the ratio of the flux to that of the pulsar are correlated with the projected distance of the knot from the pulsar. A new approach, using singular value decomposition for analyzing time series of images, was introduced yielding results consistent with the more traditional methods while some uncertainties were substantially reduced. We exploit the characterization of the knot to discuss constraints on standard shock-model parameters that may be inferred from our observations assuming the inner knot lies near to the shocked surface. These include inferences as to wind magnetization, shock shape parameters such as incident angle and poloidal radius of curvature, as well as the IR/optical emitting particle enthalpy fraction. We find that while the standard shock model gives good agreement with observation in many respects, there remain two puzzles: (a) The observed angular size of the knot relative to the pulsar--knot separation is much smaller than expected; (b) The variable, yet high degree of polarization reported is difficult to reconcile with a highly relativistic downstream flow.Comment: 46 pages, 14 figures, submitted to the Astrophysical Journa
    • …
    corecore