57 research outputs found
Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory
Gamma-ray bursts (GRBs) have long been considered a possible source of
high-energy neutrinos. While no correlations have yet been detected between
high-energy neutrinos and GRBs, the recent observation of GRB 221009A - the
brightest GRB observed by Fermi-GBM to date and the first one to be observed
above an energy of 10 TeV - provides a unique opportunity to test for hadronic
emission. In this paper, we leverage the wide energy range of the IceCube
Neutrino Observatory to search for neutrinos from GRB 221009A. We find no
significant deviation from background expectation across event samples ranging
from MeV to PeV energies, placing stringent upper limits on the neutrino
emission from this source.Comment: Version in ApJ Letters Focus on the Ultra-luminous Gamma-Ray Burst
GRB 221009
IceCat-1: The IceCube Event Catalog of Alert Tracks
We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert\u27s reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT
Constraining High-energy Neutrino Emission from Supernovae with IceCube
Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae, and for combined emission from the whole supernova sample through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. The overall deviation of all tested scenarios from the background expectation yields a p-value of 93% which is fully compatible with background. The derived upper limits on the total energy emitted in neutrinos are 1.7×10 erg for stripped-envelope supernovae, 2.8×10 erg for type IIP, and 1.3×10 erg for type IIn SNe, the latter disfavouring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that strippe-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9% respectively to the diffuse neutrino flux in the energy range of about 10−10 GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions
Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011–2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm232=2.41±0.07×10−3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties
Constraining High-energy Neutrino Emission from Supernovae with IceCube
Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p-value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 × 10 erg for stripped-envelope supernovae, 2.8 × 10 erg for type IIP, and 1.3 × 10 erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 10–10] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions
A Search for IceCube sub-TeV Neutrinos Correlated with Gravitational-Wave Events Detected By LIGO/Virgo
The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1 and
GWTC-3 containing candidate gravitational-wave (GW) events detected during its
runs O1, O2 and O3. These GW events can be possible sites of neutrino emission.
In this paper, we present a search for neutrino counterparts of 90 GW
candidates using IceCube DeepCore, the low-energy infill array of the IceCube
Neutrino Observatory. The search is conducted using an unbinned maximum
likelihood method, within a time window of 1000 s and uses the spatial and
timing information from the GW events. The neutrinos used for the search have
energies ranging from a few GeV to several tens of TeV. We do not find any
significant emission of neutrinos, and place upper limits on the flux and the
isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a
binomial test to search for source populations potentially contributing to
neutrino emission. We report a non-detection of a significant neutrino-source
population with this test.Comment: Submitted to Ap
Measurement of Atmospheric Neutrino Mixing with Improved IceCube DeepCore Calibration and Data Processing
We describe a new data sample of IceCube DeepCore and report on the latest
measurement of atmospheric neutrino oscillations obtained with data recorded
between 2011-2019. The sample includes significant improvements in data
calibration, detector simulation, and data processing, and the analysis
benefits from a detailed treatment of systematic uncertainties, with
significantly higher level of detail since our last study. By measuring the
relative fluxes of neutrino flavors as a function of their reconstructed
energies and arrival directions we constrain the atmospheric neutrino mixing
parameters to be and , assuming a normal mass ordering. The
resulting 40\% reduction in the error of both parameters with respect to our
previous result makes this the most precise measurement of oscillation
parameters using atmospheric neutrinos. Our results are also compatible and
complementary to those obtained using neutrino beams from accelerators, which
are obtained at lower neutrino energies and are subject to different sources of
uncertainties
Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory
The IceCube Neutrino Observatory has been continuously taking data to search for ( – )0.5 10 s long neutrino bursts
since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of
exploding, it will be detectable via the ( )10 MeV neutrino burst emitted during the collapse. We discuss a search for
such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking
and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order
to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an
8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino
oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect
such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing
a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc
was determined to be 0.23 yr−1
. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae
will be detectable by IceCube, unless external information on the burst time is available. We determined a model-
independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum
Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-Energy Tracks: An 11-Year Analysis
IceCube alert events are neutrinos with a moderate-to-high probability of
having astrophysical origin. In this study, we analyze 11 years of IceCube data
and investigate 122 alert events and a selection of high-energy tracks detected
between 2009 and the end of 2021. This high-energy event selection (alert
events + high-energy tracks) has an average probability of to be of
astrophysical origin. We search for additional continuous and transient
neutrino emission within the high-energy events' error regions. We find no
evidence for significant continuous neutrino emission from any of the alert
event directions. The only locally significant neutrino emission is the
transient emission associated with the blazar TXS~0506+056, with a local
significance of , which confirms previous IceCube studies. When
correcting for 122 test positions, the global p-value is and is
compatible with the background hypothesis. We constrain the total continuous
flux emitted from all 122 test positions at 100~TeV to be below ~(TeV cm s) at 90% confidence assuming an
spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux.
Overall, we find no indication that alert events, in general, are linked to
lower-energetic continuous or transient neutrino emission.Comment: Accepted by Ap
- …