10 research outputs found
A decade of monitoring Atlantic cod Gadus morhua spawning aggregations in Massachusetts Bay using passive acoustics
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Caiger, P. E., Dean, M. J., DeAngelis, A. I., Hatch, L. T., Rice, A. N., Stanley, J. A., Tholke, C., Zemeckis, D. R., & Van Parijs, S. M. A decade of monitoring Atlantic cod Gadus morhua spawning aggregations in Massachusetts Bay using passive acoustics. Marine Ecology Progress Series, 635, (2020): 89-103, doi:10.3354/meps13219.Atlantic cod Gadus morhua populations in the northeast USA have failed to recover since major declines in the 1970s and 1990s. To rebuild these stocks, managers need reliable information on spawning dynamics in order to design and implement control measures; discovering cost-effective and non-invasive monitoring techniques is also favorable. Atlantic cod form dense, site-fidelic spawning aggregations during which they vocalize, permitting acoustic detection of their presence at such times. The objective of this study was to detect spawning activity of Atlantic cod using multiple fixed-station passive acoustic recorders to sample across Massachusetts Bay during the winter spawning period. A generalized linear modeling approach was used to investigate spatio-temporal trends of cod vocalizing over 10 consecutive winter spawning seasons (2007-2016), the longest such timeline of any passive acoustic monitoring of a fish species. The vocal activity of Atlantic cod was associated with diel, lunar, and seasonal cycles, with a higher probability of occurrence at night, during the full moon, and near the end of November. Following 2009 and 2010, there was a general decline in acoustic activity. Furthermore, the northwest corner of Stellwagen Bank was identified as an important spawning location. This project demonstrated the utility of passive acoustic monitoring in determining the presence of an acoustically active fish species, and provides valuable data for informing the management of this commercially, culturally, and ecologically important species.Thanks to Eli Bonnell, Genevieve Davis, Julianne Bonell, Samara Haver, and Eric Matzen for assistance in MARU deployments, Dana Gerlach and Heather Heenehan for help in passive acoustic data analysis, and the NEFSC passive acoustics group for useful discussions. Funding for 2007−2012 passive acoustic surveys was provided by Excelerate Energy and Neptune LNG to
Cornell University. Fieldwork for 2013−2015 was funded through the 2013−2014 NOAA Saltonstall-Kennedy grant program (Award No. NA14NMF4270027), and jointly funded by The Nature Conservancy, Massachusetts Division of Marine Fisheries, and the Cabot Family Charitable Foundation. Funding for 2016 SoundTrap data was provided by NOAA’s Ocean Acoustics Program (4 Sanctuaries Project)
RSOS_17049_Visual_data_code_201711 from Beaked whales demonstrate a marked acoustic response to the use of shipboard echosounders
R code and associated output for the statistical modeling for the visual dat
RSOS_170940_Acoustic_data_code_201711 from Beaked whales demonstrate a marked acoustic response to the use of shipboard echosounders
R code and associated output for the statistical modeling for the acoustic dat
visual_groups_w_region from Beaked whales demonstrate a marked acoustic response to the use of shipboard echosounders
Data associated with visual sighting
acoustic_ALL_w_region from Beaked whales demonstrate a marked acoustic response to the use of shipboard echosounders
Data associated with all beaked whale acoustic detection
acoustic_BEAK_w_region from Beaked whales demonstrate a marked acoustic response to the use of shipboard echosounders
Data associated with “definitive” beaked whale acoustics detection
Identifying the distribution of Atlantic cod spawning using multiple fixed and glider-mounted acoustic technologies
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zemeckis, D. R., Dean, M. J., DeAngelis, A. I., Van Parijs, S. M., Hoffman, W. S., Baumgartner, M. F., Hatch, L. T., Cadrin, S. X., & McGuire, C. H. Identifying the distribution of Atlantic cod spawning using multiple fixed and glider-mounted acoustic technologies. ICES Journal of Marine Science, 76(6), (2019): 1610-1625, doi: 10.1093/icesjms/fsz064.Effective fishery management measures to protect fish spawning aggregations require reliable information on the spatio-temporal distribution of spawning. Spawning closures have been part of a suite of fishery management actions to rebuild the Gulf of Maine stock of Atlantic cod (Gadus morhua), but difficulties remain with managing rebuilding. The objective of this study was to identify the spatial and temporal distribution of cod spawning during winter in Massachusetts Bay to improve our understanding of cod spawning dynamics and inform fisheries management. Spawning was investigated in collaboration with commercial fishermen during three winter spawning seasons (October 2013–March 2016) using acoustic telemetry and passive acoustic monitoring equipment deployed in fixed-station arrays and mounted on mobile autonomous gliders. Tagged cod exhibited spawning site fidelity and spawning primarily occurred from early November through January with a mid-December peak and some inter-annual variability. The spatial distribution of spawning was generally consistent among years with multiple hotspots in areas >50 m depth. Current closures encompass most of spawning, but important areas are recommended for potential modifications. Utilizing multiple complementary technologies and deployment strategies in collaboration with commercial fishermen enabled a comprehensive description of spawning and provides a valuable model for future studies.Year 1 was jointly funded by The Nature Conservancy and Massachusetts Division of Marine Fisheries. The remainder of this research was funded through the 2013–2014 NOAA Saltonstall Kennedy grant program (Award No. NA14NMF4270027) with additional support from the Nature Conservancy and Cabot Family Charitable Foundation
Delayed colorectal cancer care during covid-19 pandemic (decor-19). Global perspective from an international survey
Background
The widespread nature of coronavirus disease 2019 (COVID-19) has been unprecedented. We sought to analyze its global impact with a survey on colorectal cancer (CRC) care during the pandemic.
Methods
The impact of COVID-19 on preoperative assessment, elective surgery, and postoperative management of CRC patients was explored by a 35-item survey, which was distributed worldwide to members of surgical societies with an interest in CRC care. Respondents were divided into two comparator groups: 1) ‘delay’ group: CRC care affected by the pandemic; 2) ‘no delay’ group: unaltered CRC practice.
Results
A total of 1,051 respondents from 84 countries completed the survey. No substantial differences in demographics were found between the ‘delay’ (745, 70.9%) and ‘no delay’ (306, 29.1%) groups. Suspension of multidisciplinary team meetings, staff members quarantined or relocated to COVID-19 units, units fully dedicated to COVID-19 care, personal protective equipment not readily available were factors significantly associated to delays in endoscopy, radiology, surgery, histopathology and prolonged chemoradiation therapy-to-surgery intervals. In the ‘delay’ group, 48.9% of respondents reported a change in the initial surgical plan and 26.3% reported a shift from elective to urgent operations. Recovery of CRC care was associated with the status of the outbreak. Practicing in COVID-free units, no change in operative slots and staff members not relocated to COVID-19 units were statistically associated with unaltered CRC care in the ‘no delay’ group, while the geographical distribution was not.
Conclusions
Global changes in diagnostic and therapeutic CRC practices were evident. Changes were associated with differences in health-care delivery systems, hospital’s preparedness, resources availability, and local COVID-19 prevalence rather than geographical factors. Strategic planning is required to optimize CRC care