3,098 research outputs found
Artifact of the phonon-induced localization by variational calculations in the spin-boson model
We present energy and free energy analyses on all variational schemes used in
the spin-boson model at both T=0 and . It is found that all the
variational schemes have fail points, at where the variational schemes fail to
provide a lower energy (or a lower free energy at ) than the
displaced-oscillator ground state and therefore the variational ground state
becomes unstable, which results in a transition from a variational ground state
to a displaced oscillator ground state when the fail point is reached. Such
transitions are always misidentied as crossover from a delocalized to localized
phases in variational calculations, leading to an artifact of phonon-induced
localization. Physics origin of the fail points and explanations for different
transition behaviors with different spectral functions are found by studying
the fail points of the variational schemes in the single mode case.Comment: 9 pages, 7 figure
Density matrix renormalization group approach of the spin-boson model
We propose a density matrix renormalization group approach to tackle a
two-state system coupled to a bosonic bath with continuous spectrum. In this
approach, the optimized phonon scheme is applied to several hundred phonon
modes which are divided linearly among the spectrum. Although DMRG cannot
resolve very small energy scales, the delocalized-localized transition points
of the two-state system are extracted by the extrapolation of the flow diagram
results. The phase diagram is compared with the numerical renormalization group
results and shows good agreement in both Ohmic and sub-Ohmic cases.Comment: 6 pages, 7 figure
A Note on Normal Forms of Quantum States and Separability
We study the normal form of multipartite density matrices. It is shown that
the correlation matrix (CM) separability criterion can be improved from the
normal form we obtained under filtering transformations. Based on CM criterion
the entanglement witness is further constructed in terms of local orthogonal
observables for both bipartite and multipartite systems.Comment: 8 page
ARPES insights on the metallic states of YbB6(001): E(k) dispersion, temporal changes and spatial variation
We report high resolution Angle Resolved PhotoElectron Spectroscopy (ARPES)
results on the (001) cleavage surface of YbB, a rare-earth compound which
has been recently predicted to host surface electronic states with topological
character. We observe two types of well-resolved metallic states, whose Fermi
contours encircle the time-reversal invariant momenta of the YbB(001)
surface Brillouin zone, and whose full (E,)-dispersion relation can be
measured wholly unmasked by states from the rest of the electronic structure.
Although the two-dimensional character of these metallic states is confirmed by
their lack of out-of-plane dispersion, two new aspects are revealed in these
experiments. Firstly, these states do not resemble two branches of opposite,
linear velocity that cross at a Dirac point, but rather straightforward
parabolas which terminate to high binding energy with a clear band bottom.
Secondly, these states are sensitive to time-dependent changes of the YbB
surface under ultrahigh vacuum conditions. Adding the fact that these data from
cleaved YbB surfaces also display spatial variations in the electronic
structure, it appears there is little in common between the theoretical
expectations for an idealized YbB(001) crystal truncation on the one
hand, and these ARPES data from real cleavage surfaces on the other.Comment: 8 pages, 4 figures (accepted in Physical Review B
More on volume dependence of spectral weight function
Spectral weight functions are easily obtained from two-point correlation
functions and they might be used to distinguish single-particle from
multi-particle states in a finite-volume lattice calculation, a problem crucial
for many lattice QCD simulations. In previous studies, it is shown that the
spectral weight function for a broad resonance shares the typical volume
dependence of a two-particle scattering state i.e. proportional to in a
large cubic box of size while the narrow resonance case requires further
investigation. In this paper, a generalized formula is found for the spectral
weight function which incorporates both narrow and broad resonance cases.
Within L\"uscher's formalism, it is shown that the volume dependence of the
spectral weight function exhibits a single-particle behavior for a extremely
narrow resonance and a two-particle behavior for a broad resonance. The
corresponding formulas for both and channels are derived. The
potential application of these formulas in the extraction of resonance
parameters are also discussed
Spin 3/2 Pentaquarks
We investigate the possible existence of the spin 3/2 pentaquark states using
interpolating currents with K-N color-octet structure in the framework of QCD
finite energy sum rule (FESR). We pay special attention to the convergence of
the operator product expansion
A phase Ib study of pertuzumab, a recombinant humanised antibody to HER2, and docetaxel in patients with advanced solid tumours
Pertuzumab represents the first in a new class of targeted therapeutics known as HER dimerisation inhibitors. We conducted a phase Ib study to determine the maximum-tolerated dose, the dose limiting toxicities (DLT), and pharmacokinetic (PK) interaction of docetaxel when administered in combination with pertuzumab. Initially, two dose levels of docetaxel (60 and 75 mg m−2) were explored in combination with a fixed dose of 1050 mg of pertuzumab; then two dose levels of docetaxel (75 and 100 mg m−2) were explored in combination following a fixed dose of 420 mg of pertuzumab with a loading dose of 840 mg. Both drugs were administered intravenously every 3 weeks. The latter dose of pertuzumab was allowed after an amendment to the original protocol when phase II data suggesting no difference in toxicity or activity between the 2 doses became available. Two patients out of two treated at docetaxel 75 mg m−2 in combination with pertuzumab 1050 mg suffered DLT (grade 3 diarrhoea and grade 4 febrile neutropaenia). Two out of five patients treated at docetaxel 100 mg m−2 in combination with pertuzumab 420 mg with a loading dose of 840 mg suffered DLT (grade 3 fatigue and grade 4 febrile neutropaenia). Stable disease was observed at four cycles in more than half of the patients treated and a confirmed radiological partial response with a >50% decline in PSA in a patient with hormone refractory prostate cancer were observed. There were no pharmacokinetic drug–drug interactions. The recommended phase II dose of this combination was docetaxel 75 mg m−2 and 420 mg pertuzumab following a loading dose of 840 mg
- …