13,613 research outputs found
Generalized gaugings and the field-antifield formalism
We discuss the algebra of general gauge theories that are described by the
embedding tensor formalism. We compare the gauge transformations dependent and
independent of an invariant action, and argue that the generic transformations
lead to an infinitely reducible algebra. We connect the embedding tensor
formalism to the field-antifield (or Batalin-Vilkovisky) formalism, which is
the most general formulation known for general gauge theories and their
quantization. The structure equations of the embedding tensor formalism are
included in the master equation of the field-antifield formalism.Comment: 42 pages; v2: some clarifications and 1 reference added; version to
be published in JHE
The general gaugings of maximal d=9 supergravity
We use the embedding tensor method to construct the most general maximal
gauged/massive supergravity in d=9 dimensions and to determine its extended
field content. Only the 8 independent deformation parameters (embedding tensor
components, mass parameters etc.) identified by Bergshoeff \textit{et al.} (an
SL(2,R) triplet, two doublets and a singlet can be consistently introduced in
the theory, but their simultaneous use is subject to a number of quadratic
constraints. These constraints have to be kept and enforced because they cannot
be used to solve some deformation parameters in terms of the rest. The
deformation parameters are associated to the possible 8-forms of the theory,
and the constraints are associated to the 9-forms, all of them transforming in
the conjugate representations. We also give the field strengths and the gauge
and supersymmetry transformations for the electric fields in the most general
case. We compare these results with the predictions of the E11 approach,
finding that the latter predicts one additional doublet of 9-forms, analogously
to what happens in N=2, d=4,5,6 theories.Comment: Latex file, 43 pages, reference adde
The Tensor Hierarchies of Pure N=2,d=4,5,6 Supergravities
We study the supersymmetric tensor hierarchy of pure (gauged) N=2,d=4,5,6
supergravity and compare them with those of the pure, ungauged, theories
(worked out by Gomis and Roest for d=5) and the predictions of the Kac-Moody
approach made by Kleinschmidt and Roest. We find complete agreement in the
ungauged case but we also find that, after gauging, new Stueckelberg symmetries
reduce the number of independent "physical" top-forms. The analysis has to be
performed to all orders in fermion fields.
We discuss the construction of the worldvolume effective actions for the
p-branes which are charged with respect to the (p+1)-form potentials and the
relations between the tensor hierarchies and p-branes upon dimensional
reduction.Comment: LaTeX2e file, 20 pages, 1 figure Results refined by extension of the
analysis to all orders in fermion
Non-abelian D=11 Supermembrane
We obtain a U(M) action for supermembranes with central charges in the Light
Cone Gauge (LCG). The theory realizes all of the symmetries and constraints of
the supermembrane together with the invariance under a U(M) gauge group with M
arbitrary. The worldvolume action has (LCG) N=8 supersymmetry and it
corresponds to M parallel supermembranes minimally immersed on the target M9xT2
(MIM2). In order to ensure the invariance under the symmetries and to close the
corresponding algebra, a star-product determined by the central charge
condition is introduced. It is constructed with a nonconstant symplectic
two-form where curvature terms are also present. The theory is in the strongly
coupled gauge-gravity regime. At low energies, the theory enters in a
decoupling limit and it is described by an ordinary N=8 SYM in the IR phase for
any number of M2-branes.Comment: Contribution to the Proceedings of the Dubna International SQS'09
Workshop ("Supersymmetries and Quantum Symmetries-2009", July 29 - August 3,
2009. 12pg, Late
Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation
Leucine-rich repeat kinase 2 (LRRK2) kinase activity is increased in several pathogenic mutations, including the most common mutation, G2019S, and is known to play a role in Parkinson’s disease (PD) pathobiology. This has stimulated the development of potent, selective LRRK2 kinase inhibitors as one of the most prevailing disease-modifying therapeutic PD strategies. Although several lines of evidence support beneficial effects of LRRK2 kinase inhibitors, many questions need to be answered before clinical applications can be envisaged. Using six different LRRK2 kinase inhibitors, we show that LRRK2 kinase inhibition induces LRRK2 dephosphorylation and can reduce LRRK2 protein levels of overexpressed wild type and G2019S, but not A2016T or K1906M, LRRK2 as well as endogenous LRRK2 in mouse brain, lung and kidney. The inhibitor-induced reduction in LRRK2 levels could be reversed by proteasomal inhibition, but not by lysosomal inhibition, while mRNA levels remained unaffected. In addition, using LRRK2 S910A and S935A phosphorylation mutants, we show that dephosphorylation of these sites is not required for LRRK2 degradation. Increasing our insight in the molecular and cellular consequences of LRRK2 kinase inhibition will be crucial in the further development of LRRK2-based PD therapies
A Massive S-duality in 4 dimensions
We reduce the Type IIA supergravity theory with a generalized Scherk-Schwarz
ansatz that exploits the scaling symmetry of the dilaton, the metric and the NS
2-form field. The resulting theory is a new massive, gauged supergravity theory
in four dimensions with a massive 2-form field and a massive 1-form field. We
show that this theory is S-dual to a theory with a massive vector field and a
massive 2-form field, which are dual to the massive 2-form and 1-form fields in
the original theory, respectively. The S-dual theory is shown to arise from a
Scherk-Schwarz reduction of the heterotic theory. Hence we establish a massive,
S-duality type relation between the IIA theory and the heterotic theory in four
dimensions. We also show that the Lagrangian for the new four dimensional
theory can be put in the most general form of a D=4, N=4 gauged Lagrangian
found by Schon and Weidner, in which (part of) the SL(2) group has been gauged.Comment: 20 pages, references adde
Electric and magnetic charges in N=2 conformal supergravity theories
General Lagrangians are constructed for N=2 conformal supergravity theories
in four space-time dimensions involving gauge groups with abelian and/or
non-abelian electric and magnetic charges. The charges are encoded in the gauge
group embedding tensor. The scalar potential induced by the gauge interactions
is quadratic in this tensor, and, when the embedding tensor is treated as a
spurionic quantity, it is formally covariant with respect to electric/magnetic
duality. This work establishes a general framework for studying any deformation
induced by gauge interactions of matter-coupled N=2 supergravity theories. As
an application, full and residual supersymmetry realizations in maximally
symmetric space-times are reviewed. Furthermore, a general classification is
presented of supersymmetric solutions in
space-times. As it turns out, these solutions allow either eight or four
supersymmetries. With four supersymmetries, the spinorial parameters are
Killing spinors of that are constant on , so that they
carry no spin, while the bosonic background is rotationally invariant.Comment: 49 pages, typos correcte
A method for mechanical generation of radio frequency fields in nuclear magnetic resonance force microscopy
We present an innovative method for magnetic resonance force microscopy
(MRFM) with ultra-low dissipation, by using the higher modes of the mechanical
detector as radio frequency (rf) source. This method allows MRFM on samples
without the need to be close to an rf source. Furthermore, since rf sources
require currents that give dissipation, our method enables nuclear magnetic
resonance experiments at ultra-low temperatures. Removing the need for an
on-chip rf source is an important step towards a MRFM which can be widely used
in condensed matter physics.Comment: 7 pages, 5 figures, to be submitted to Physical Review Applie
- …