15 research outputs found

    NAC transcription factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the Arabidopsis columella and lateral root cap

    Get PDF
    Programmed cell death in plants occurs both during stress responses and as an integral part of regular plant development. Despite the undisputed importance of developmentally controlled cell death processes for plant growth and reproduction, we are only beginning to understand the underlying molecular genetic regulation. Exploiting the Arabidopsis thaliana root cap as a cell death model system, we identified two NAC transcription factors, the little-characterized ANAC087 and the leaf-senescence regulator ANAC046, as being sufficient to activate the expression of cell death-associated genes and to induce ectopic programmed cell death. In the root cap, these transcription factors are involved in the regulation of distinct aspects of programmed cell death. ANAC087 orchestrates postmortem chromatin degradation in the lateral root cap via the nuclease BFN1. In addition, both ANAC087 and ANAC046 redundantly control the onset of cell death execution in the columella root cap during and after its shedding from the root tip. Besides identifying two regulators of developmental programmed cell death, our analyses reveal the existence of an actively controlled cell death program in Arabidopsis columella root cap cells

    KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis

    Get PDF
    Flowers have a species-specific functional life span that determines the time window in which pollination, fertilization and seed set can occur. The stigma tissue plays a key role in flower receptivity by intercepting pollen and initiating pollen tube growth toward the ovary. In this article, we show that a developmentally controlled cell death programme terminates the functional life span of stigma cells in Arabidopsis. We identified the leaf senescence regulator ORESARA1 (also known as ANAC092) and the previously uncharacterized KIRA1 (also known as ANAC074) as partially redundant transcription factors that modulate stigma longevity by controlling the expression of programmed cell death-associated genes. KIRA1 expression is sufficient to induce cell death and terminate floral receptivity, whereas lack of both KIRA1 and ORESARA1 substantially increases stigma life span. Surprisingly, the extension of stigma longevity is accompanied by only a moderate extension of flower receptivity, suggesting that additional processes participate in the control of the flower's receptive life span

    Convergent evolution of water conducting cells in Marchantia recruited the ZHOUPI gene promoting cell wall reinforcement and programmed cell death

    Get PDF
    A key adaptation of plants to life on land is the formation of water conducting cells (WCC) for efficient long-distance water transport. Based on morphological analyses it is thought that WCC have evolved independently on multiple occasions. For example, WCC have been lost in all but a few lineages of bryophytes but strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalised water conducting tissue composed of reinforced, hollow cells termed pegged rhizoids. Here we show that pegged rhizoid differentiation in Marchantia polymorpha is controlled by orthologues of the ZHOUPI and ICE bHLH transcription factors required for endosperm cell death in Arabidopsis seeds. By contrast, pegged rhizoid development was not affected by disruption of MpNAC5, the Marchantia orthologue of the VND genes that control WCC formation in flowering plants. We characterize the rapid, genetically controlled programmed cell death process that pegged rhizoids undergo to terminate cellular differentiation, and identify a corresponding upregulation of conserved putative plant cell death effector genes. Lastly, we show that ectopic expression of MpZOU1 increases production of pegged rhizoids and enhances drought tolerance. Our results support that pegged rhizoids having evolved independently of other WCC. We suggest that elements of the genetic control of developmental cell death are conserved throughout land plants and that the ZHOUPI/ICE regulatory module has been independently recruited to promote cell wall modification and programmed cell death in liverwort rhizoids and in the endosperm of flowering plant seed

    Fertility loss in senescing Arabidopsis ovules is controlled by the maternal sporophyte via a NAC transcription factor triad

    No full text
    Flowers have a species-specific fertile period during which pollination and fertilization have to occur to initiate seed and fruit development. Unpollinated flowers remain receptive for mere hours in some species, and up to several weeks in others before flower senescence terminates fertility. As such, floral longevity is a key trait subject to both natural selection and plant breeding. Within the flower, the life span of the ovule containing the female gametophyte is decisive for fertilization and the initiation of seed development. Here, we show that unfertilized ovules in Arabidopsis thaliana undergo a senescence program that generates morphological and molecular hallmarks of canonical programmed cell death processes in the sporophytically derived ovule integuments. Transcriptome profiling of isolated aging ovules revealed substantial transcriptomic reprogramming during ovule senescence, and identified up-regulated transcription factors as candidate regulators of these processes. Combined mutation of three most-up-regulated NAC (NAM, ATAF1/2, and CUC2) transcription factors, NAP/ANAC029, SHYG/ANAC047, and ORE1/ANAC092, caused a substantial delay in ovule senescence and an extension of fertility in Arabidopsis ovules. These results suggest that timing of ovule senescence and duration of gametophyte receptivity are subject to genetic regulation controlled by the maternal sporophyte

    SHORT-ROOT and SCARECROW Regulate Leaf Growth in Arabidopsis by Stimulating S-Phase Progression of the Cell Cycle1[W][OA]

    Get PDF
    SHORT-ROOT (SHR) and SCARECROW (SCR) are required for stem cell maintenance in the Arabidopsis (Arabidopsis thaliana) root meristem, ensuring its indeterminate growth. Mutation of SHR and SCR genes results in disorganization of the quiescent center and loss of stem cell activity, resulting in the cessation of root growth. This paper reports on the role of SHR and SCR in the development of leaves, which, in contrast to the root, have a determinate growth pattern and lack a persistent stem cell niche. Our results demonstrate that inhibition of leaf growth in shr and scr mutants is not a secondary effect of the compromised root development but is caused by an effect on cell division in the leaves: a reduced cell division rate and early exit of the proliferation phase. Consistent with the observed cell division phenotype, the expression of SHR and SCR genes in leaves is closely associated with cell division activity in most cell types. The increased cell cycle duration is due to a prolonged S-phase duration, which is mediated by up-regulation of cell cycle inhibitors known to restrain the activity of the transcription factor, E2Fa. Therefore, we conclude that, in contrast to their specific roles in cortex/endodermis differentiation and stem cell maintenance in the root, SHR and SCR primarily function as general regulators of cell proliferation in leaves

    Genetic Framework of Cyclin-Dependent Kinase Function in Arabidopsis

    No full text
    Summary Cyclin-dependent kinases (CDKs) are at the heart of eukaryotic cell-cycle control. The yeast Cdc2/CDC28 PSTAIRE kinase and its orthologs such as the mammalian Cdk1 have been found to be indispensable for cell-cycle progression in all eukaryotes investigated so far. CDKA;1 is the only PSTAIRE kinase in the flowering plant Arabidopsis and can rescue Cdc2/CDC28 mutants. Here, we show that cdka;1 null mutants are viable but display specific cell-cycle and developmental defects, e.g., in S phase entry and stem cell maintenance. We unravel that the crucial function of CDKA;1 is the control of the plant Retinoblastoma homolog RBR1 and that codepletion of RBR1 and CDKA;1 rescued most defects of cdka;1 mutants. Our work further revealed a basic cell-cycle control system relying on two plant-specific B1-type CDKs, and the triple cdk mutants displayed an early germline arrest. Taken together, our data indicate divergent functional differentiation of Cdc2-type kinases during eukaryote evolution

    Repressive ZINC FINGER OF ARABIDOPSIS THALIANA proteins promote programmed cell death in the Arabidopsis columella root cap

    No full text
    Developmental programmed cell death (dPCD) controls a plethora of functions in plant growth and reproduction. In the root cap of Arabidopsis (Arabidopsis thaliana), dPCD functions to control organ size in balance with the continuous stem cell activity in the root meristem. Key regulators of root cap dPCD including SOMBRERO/ANAC033 (SMB) belong to the NAC family of transcription factors. Here we identify the C2H2 zinc finger protein ZINC FINGER OF ARABIDOPSIS THALIANA 14 ZAT14 as part of the gene regulatory network of root cap dPCD acting downstream of SMB. Similar to SMB, ZAT14 inducible misexpression leads to extensive ectopic cell death. Both the canonical EAR motif and a conserved L-box motif of ZAT14 act as transcriptional repression motifs and are required to trigger cell death. While a single zat14 mutant does not show a cell death-related phenotype, a quintuple mutant knocking out five related ZAT paralogs shows a delayed onset of dPCD execution in the columella and the adjacent lateral root cap. While ZAT14 is co-expressed with established dPCD-associated genes, it does not activate their expression. Our results suggest that ZAT14 acts as a transcriptional repressor controlling a so far uncharacterized sub-section of the dPCD gene regulatory network active in specific root cap tissues

    KIL1 terminates fertility in maize by controlling silk senescence

    No full text
    Plant flowers have a functional life span during which pollination and fertilization occur to ensure seed and fruit development. Once flower senescence is initiated, the potential to set seed or fruit is irrevocably lost. In maize, silk strands are the elongated floral stigmas that emerge from the husk-enveloped inflorescence to intercept airborne pollen. Here we show that KIRA1-LIKE1 (KIL1), an ortholog of the Arabidopsis NAC (NAM (NO APICAL MERISTEM), ATAF1/2 (Arabidopsis thaliana Activation Factor1 and 2) and CUC (CUP-SHAPED COTYLEDON 2)) transcription factor KIRA1, promotes senescence and programmed cell death (PCD) in the silk strand base, ending the window of accessibility for fertilization of the ovary. Loss of KIL1 function extends silk receptivity and thus strongly increases kernel yield following late pollination. This phenotype offers new opportunities for possibly improving yield stability in cereal crops. Moreover, despite diverging flower morphologies and the substantial evolutionary distance between Arabidopsis and maize, our data indicate remarkably similar principles in terminating floral receptivity by PCD, whose modulation offers the potential to be widely used in agriculture. The maize NAC transcription factor KIL1 terminates the fertility of female flowers maize ears by promoting programmed cell death in senescing silk strands
    corecore