418 research outputs found
Het 'bijzondere' van de Schelde: de abiotiek van het Schelde-estuarium
The Scheldt estuary is a vast ecosystem in which powerful natural forces prevail. Tidal action is a key element in the functioning of the estuary. The combination of tide and discharge results in a salinity gradient that is characterized by strong variations in the brackish part. The estuary is a highly turbidsystem. The load of suspended solids is determined by acomplex mix of factors. The dynamic interactions of the physicochemical and morphological parameters lead to a range of various habitats, with highly fluctuating conditions. This, together with the very heavy human impact, both morphological and chemical makes the estuary a very stressed environment in which the survival of plants and animals requires special adaptations
Nearly optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces
The \emph{Chow parameters} of a Boolean function
are its degree-0 and degree-1 Fourier coefficients. It has been known
since 1961 (Chow, Tannenbaum) that the (exact values of the) Chow parameters of
any linear threshold function uniquely specify within the space of all
Boolean functions, but until recently (O'Donnell and Servedio) nothing was
known about efficient algorithms for \emph{reconstructing} (exactly or
approximately) from exact or approximate values of its Chow parameters. We
refer to this reconstruction problem as the \emph{Chow Parameters Problem.}
Our main result is a new algorithm for the Chow Parameters Problem which,
given (sufficiently accurate approximations to) the Chow parameters of any
linear threshold function , runs in time \tilde{O}(n^2)\cdot
(1/\eps)^{O(\log^2(1/\eps))} and with high probability outputs a
representation of an LTF that is \eps-close to . The only previous
algorithm (O'Donnell and Servedio) had running time \poly(n) \cdot
2^{2^{\tilde{O}(1/\eps^2)}}.
As a byproduct of our approach, we show that for any linear threshold
function over , there is a linear threshold function which
is \eps-close to and has all weights that are integers at most \sqrt{n}
\cdot (1/\eps)^{O(\log^2(1/\eps))}. This significantly improves the best
previous result of Diakonikolas and Servedio which gave a \poly(n) \cdot
2^{\tilde{O}(1/\eps^{2/3})} weight bound, and is close to the known lower
bound of (1/\eps)^{\Omega(\log \log (1/\eps))}\} (Goldberg,
Servedio). Our techniques also yield improved algorithms for related problems
in learning theory
Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies
Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosinâactin association or tropomyosin head-to-tail binding
Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument
We give a description of the design, construction and testing of the 30 and
44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the
Planck mission to be launched in 2009. The scientific requirements of the
mission determine the performance parameters to be met by the FEMs, including
their linear polarization characteristics.
The FEM design is that of a differential pseudo-correlation radiometer in
which the signal from the sky is compared with a 4-K blackbody load. The Low
Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High
Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel
phase-switch design which gives excellent amplitude and phase match across the
band.
The noise temperature requirements are met within the measurement errors at
the two frequencies. For the most sensitive LNAs, the noise temperature at the
band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively.
For some of the FEMs, the noise temperature is still falling as the ambient
temperature is reduced to 20 K. Stability tests of the FEMs, including a
measurement of the 1/f knee frequency, also meet mission requirements.
The 30 and 44 GHz FEMs have met or bettered the mission requirements in all
critical aspects. The most sensitive LNAs have reached new limits of noise
temperature for HEMTs at their band centres. The FEMs have well-defined linear
polarization characteristcs.Comment: 39 pages, 33 figures (33 EPS files), 12 tables. Planck LFI technical
papers published by JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022
Metabolomics methods for the synthetic biology of secondary metabolism
Many microbial secondary metabolites are of high biotechnological value for medicine, agriculture, and the food industry. Bacterial genome mining has revealed numerous novel secondary metabolite biosynthetic gene clusters, which encode the potential to synthesize a large diversity of compounds that have never been observed before. The stimulation or âawakeningâ of this cryptic microbial secondary metabolism has naturally attracted the attention of synthetic microbiologists, who exploit recent advances in DNA sequencing and synthesis to achieve unprecedented control over metabolic pathways. One of the indispensable tools in the synthetic biology toolbox is metabolomics, the global quantification of small biomolecules. This review illustrates the pivotal role of metabolomics for the synthetic microbiology of secondary metabolism, including its crucial role in novel compound discovery in microbes, the examination of side products of engineered metabolic pathways, as well as the identification of major bottlenecks for the overproduction of compounds of interest, especially in combination with metabolic modeling. We conclude by highlighting remaining challenges and recent technological advances that will drive metabolomics towards fulfilling its potential as a cornerstone technology of synthetic microbiology
Control of nuclear beta-dystroglycan content is crucial for the maintenance of nuclear envelope integrity and function
β-Dystroglycan (β-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling β-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that β-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced β-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and β-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear β-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear β-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity
Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers
The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries
eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each
composed of a pair of pseudo-correlation receivers. We describe the on-ground
calibration campaign performed to qualify the flight model RCAs and to measure
their pre-launch performances. Each RCA was calibrated in a dedicated
flight-like cryogenic environment with the radiometer front-end cooled to 20K
and the back-end at 300K, and with an external input load cooled to 4K. A
matched load simulating a blackbody at different temperatures was placed in
front of the sky horn to derive basic radiometer properties such as noise
temperature, gain, and noise performance, e.g. 1/f noise. The spectral response
of each detector was measured as was their susceptibility to thermal variation.
All eleven LFI RCAs were calibrated. Instrumental parameters measured in these
tests, such as noise temperature, bandwidth, radiometer isolation, and
linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and
Astrophysic
The impacts of environmental warming on Odonata: a review
Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
Planck pre-launch status: Low Frequency Instrument calibration and expected scientific performance
We give the calibration and scientific performance parameters of the Planck
Low Frequency Instrument (LFI) measured during the ground cryogenic test
campaign. These parameters characterise the instrument response and constitute
our best pre-launch knowledge of the LFI scientific performance. The LFI shows
excellent stability and rejection of instrumental systematic effects;
measured noise performance shows that LFI is the most sensitive instrument of
its kind. The set of measured calibration parameters will be updated during
flight operations through the end of the mission.Comment: Accepted for publications in Astronomy and Astrophysics. Astronomy &
Astrophysics, 2010 (acceptance date: 12 Jan 2010
- âŚ