15,262 research outputs found

    Image Ellipticity from Atmospheric Aberrations

    Get PDF
    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1 / sqrt(N)). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.Comment: 9 pages, 5 color figures (some reduced in size). Accepted for publication in the Astrophysical Journa

    The Astrophysical Multipurpose Software Environment

    Get PDF
    We present the open source Astrophysical Multi-purpose Software Environment (AMUSE, www.amusecode.org), a component library for performing astrophysical simulations involving different physical domains and scales. It couples existing codes within a Python framework based on a communication layer using MPI. The interfaces are standardized for each domain and their implementation based on MPI guarantees that the whole framework is well-suited for distributed computation. It includes facilities for unit handling and data storage. Currently it includes codes for gravitational dynamics, stellar evolution, hydrodynamics and radiative transfer. Within each domain the interfaces to the codes are as similar as possible. We describe the design and implementation of AMUSE, as well as the main components and community codes currently supported and we discuss the code interactions facilitated by the framework. Additionally, we demonstrate how AMUSE can be used to resolve complex astrophysical problems by presenting example applications.Comment: 23 pages, 25 figures, accepted for A&

    A study of the parity-odd nucleon-nucleon potential

    Full text link
    We investigate the parity-violating nucleon-nucleon potential as obtained in chiral effective field theory. By using resonance saturation we compare the chiral potential to the more traditional one-meson exchange potential. In particular, we show how parameters appearing in the different approaches can be compared with each other and demonstrate that analyses of parity violation in proton-proton scattering within the different approaches are in good agreement. In the second part of this work, we extend the parity-violating potential to next-to-next-to-leading order. We show that generally it includes both one-pion- and two-pion-exchange corrections, but the former play no significant role. The two-pion-exchange corrections depend on five new low-energy constants which only become important if the leading-order weak pion-nucleon constant hπh_\pi turns out to be very small.Comment: Published versio

    A Penalty Branch-and-Bound Method for Mixed Binary Linear Complementarity Problems

    Get PDF
    Linear complementarity problems (LCPs) are an important modeling tool for many practically relevant situations and also have many important applications in mathematics itself. Although the continuous version of the problem is extremely well-studied, much less is known about mixed-integer LCPs (MILCPs) in which some variables have to be integer valued in a solution. In particular, almost no tailored algorithms are known besides reformulations of the problem that allow us to apply general purpose mixed integer linear programming solvers. In this paper, we present, theoretically analyze, enhance, and test a novel branch-and bound method for MILCPs. The main property of this method is that we do not "branch " on constraints as usual but by adding suitably chosen penalty terms to the objective function. By doing so, we can either provably compute an MILCP solution if one exists or compute an approximate solution that minimizes an infeasibility measure combining integrality and complementarity conditions. We enhance the method by MILCP-tailored valid inequalities, node selection strategies, branching rules, and warm-starting techniques. The resulting algorithm is shown to clearly outperform two benchmark approaches from the literature

    Tortuous ways to the extraction of neutron observables from inclusive lepton scattering

    Full text link
    We analyze new JLAB data for inclusive electron scattering on various targets. Computed and measured total inclusive cross sections in the range 0.3x0.950.3\lesssim x\lesssim 0.95 show on a logarithmic scale reasonable agreement for all targets. However, closer inspection of the Quasi-Elastic components bares serious discrepancies. EMC ratios which may contain less systematic errors fare the same. The above observations for the new data do not enable the extraction of the magnetic form factor (FF) GMnG_M^n and the Structure Function (SFs) F2nF_2^n of the neutron, although the application of exactly the same analysis to older data had been successful. We add to the above analysis older CLAS collaboration on F2DF_2^D. Removing some scattered points, it appears possible to obtain the above mentioned neutron information. We compare our results with others from alternative sources. Particular attention is paid to the A=3 iso-doublet. Present data exist only for 3^3He, but the available input and charge symmetry also enable computations for 3^3H. Their average is the computed iso-scalar part and is compared with the empirical modification of 3^3He towards a fictitious A=3 iso-singlet.Comment: 27 pages, 30 figure

    Point cadastre

    Get PDF

    Investigating the interstellar dust through the Fe K-edge

    Get PDF
    The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm210^{24}\ \rm{cm}^{-2}). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Automatic segmentation of MR brain images with a convolutional neural network

    Full text link
    Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes using a convolutional neural network. To ensure that the method obtains accurate segmentation details as well as spatial consistency, the network uses multiple patch sizes and multiple convolution kernel sizes to acquire multi-scale information about each voxel. The method is not dependent on explicit features, but learns to recognise the information that is important for the classification based on training data. The method requires a single anatomical MR image only. The segmentation method is applied to five different data sets: coronal T2-weighted images of preterm infants acquired at 30 weeks postmenstrual age (PMA) and 40 weeks PMA, axial T2- weighted images of preterm infants acquired at 40 weeks PMA, axial T1-weighted images of ageing adults acquired at an average age of 70 years, and T1-weighted images of young adults acquired at an average age of 23 years. The method obtained the following average Dice coefficients over all segmented tissue classes for each data set, respectively: 0.87, 0.82, 0.84, 0.86 and 0.91. The results demonstrate that the method obtains accurate segmentations in all five sets, and hence demonstrates its robustness to differences in age and acquisition protocol

    Long Term Variability of SDSS Quasars

    Full text link
    We use a sample of 3791 quasars from the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR), and compare their photometry to historic plate material for the same set of quasars in order to study their variability properties. The time base-line we attain this way ranges from a few months to up to 50 years. In contrast to monitoring programs, where relatively few quasars are photometrically measured over shorter time periods, we utilize existing databases to extend this base-line as much as possible, at the cost of sampling per quasar. Our method, however, can easily be extended to much larger samples. We construct variability Structure Functions and compare these to the literature and model functions. From our modeling we conclude that 1) quasars are more variable toward shorter wavelengths, 2) their variability is consistent with an exponentially decaying light-curve with a typical time-scale of ~2 years, 3) these outbursts occur on typical time-scales of ~200 years. With the upcoming first data release of the SDSS, a much larger quasar sample can be used to put these conclusions on a more secure footing.Comment: 16 pages, accepted for publication in AJ, Sept issu
    corecore