150 research outputs found

    Emergence d’une spécialité scientifique dans l’espace - La réparation de l’ADN

    Get PDF
    International audienceIn the study of science, the specialty is seen as the ideal level of analysis to understand the genesis and development of scientific communities. This article uses bibliometric data to analyze the emergence of DNA repair by testing a hybrid method to identify the specialty’s appearance in geographical space by focusing on the geographical trajectories of the pioneers in this field. We try to identify the professional mobility of researchers using these bibliometric data, and if possible to highlight the structural networks of places during the emergence stage of the specialty. These networks determine places as much as they are built by individual trajectories. In this way, we try to make a place for the geography of science in the field of social studies of science.Dans l’étude des sciences, la spécialité est perçue comme le niveau d’analyse idéal pour comprendre la genèse et le développement des collectifs scientifiques. Cet article utilise des données bibliométriques pour analyser l’émergence de la Réparation de l’ADN en expérimentant une méthode mixte pour repérer son apparition dans l’espace géographique. En nous concentrant sur les trajectoires géographiques de pionniers dans cedomaine, nous tâchons de repérer leur mobilité professionnelle à l’aide de données bibliométriques dans la perspective de mettre en évidence les réseaux de lieux structurants dans la phase d’émergence de la spécialité. Ces réseaux de lieux déterminent autant qu’ils sont construits par les trajectoires individuelles. Nous essayons ainsi de faire une place à la géographie des sciences dans le domaine des études sociales des sciences

    Identifying Diffusion Patterns of Research Articles on Twitter: A Case Study of Online Engagement with Open Access Articles

    Get PDF
    The growing presence of research shared on social media, coupled with the increase in freely available research, invites us to ask whether scientific articles shared on platforms like Twitter diffuse beyond the academic community. We explore a new method for answering this question by identifying 11 articles from two open access biology journals that were shared on Twitter at least 50 times and by analyzing the follower network of users who tweeted each article. We find that diffusion patterns of scientific articles can take very different forms, even when the number of times they are tweeted is similar. Our small case study suggests that most articles are shared within single-connected communities with limited diffusion to the public. The proposed approach and indicators can serve those interested in the public understanding of science, science communication, or research evaluation to identify when research diffuses beyond insular communities. &nbsp

    Characterizing and modeling citation dynamics

    Get PDF
    Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.Comment: 8 pages, 5 figure

    Characterizing Interdisciplinarity of Researchers and Research Topics Using Web Search Engines

    Get PDF
    Researchers' networks have been subject to active modeling and analysis. Earlier literature mostly focused on citation or co-authorship networks reconstructed from annotated scientific publication databases, which have several limitations. Recently, general-purpose web search engines have also been utilized to collect information about social networks. Here we reconstructed, using web search engines, a network representing the relatedness of researchers to their peers as well as to various research topics. Relatedness between researchers and research topics was characterized by visibility boost-increase of a researcher's visibility by focusing on a particular topic. It was observed that researchers who had high visibility boosts by the same research topic tended to be close to each other in their network. We calculated correlations between visibility boosts by research topics and researchers' interdisciplinarity at individual level (diversity of topics related to the researcher) and at social level (his/her centrality in the researchers' network). We found that visibility boosts by certain research topics were positively correlated with researchers' individual-level interdisciplinarity despite their negative correlations with the general popularity of researchers. It was also found that visibility boosts by network-related topics had positive correlations with researchers' social-level interdisciplinarity. Research topics' correlations with researchers' individual- and social-level interdisciplinarities were found to be nearly independent from each other. These findings suggest that the notion of "interdisciplinarity" of a researcher should be understood as a multi-dimensional concept that should be evaluated using multiple assessment means.Comment: 20 pages, 7 figures. Accepted for publication in PLoS On

    Who is the best player ever? A complex network analysis of the history of professional tennis

    Get PDF
    We consider all matches played by professional tennis players between 1968 and 2010, and, on the basis of this data set, construct a directed and weighted network of contacts. The resulting graph shows complex features, typical of many real networked systems studied in literature. We develop a diffusion algorithm and apply it to the tennis contact network in order to rank professional players. Jimmy Connors is identified as the best player of the history of tennis according to our ranking procedure. We perform a complete analysis by determining the best players on specific playing surfaces as well as the best ones in each of the years covered by the data set. The results of our technique are compared to those of two other well established methods. In general, we observe that our ranking method performs better: it has a higher predictive power and does not require the arbitrary introduction of external criteria for the correct assessment of the quality of players. The present work provides a novel evidence of the utility of tools and methods of network theory in real applications.Comment: 10 pages, 4 figures, 4 table

    A reverse engineering approach to the suppression of citation biases reveals universal properties of citation distributions

    Get PDF
    The large amount of information contained in bibliographic databases has recently boosted the use of citations, and other indicators based on citation numbers, as tools for the quantitative assessment of scientific research. Citations counts are often interpreted as proxies for the scientific influence of papers, journals, scholars, and institutions. However, a rigorous and scientifically grounded methodology for a correct use of citation counts is still missing. In particular, cross-disciplinary comparisons in terms of raw citation counts systematically favors scientific disciplines with higher citation and publication rates. Here we perform an exhaustive study of the citation patterns of millions of papers, and derive a simple transformation of citation counts able to suppress the disproportionate citation counts among scientific domains. We find that the transformation is well described by a power-law function, and that the parameter values of the transformation are typical features of each scientific discipline. Universal properties of citation patterns descend therefore from the fact that citation distributions for papers in a specific field are all part of the same family of univariate distributions.Comment: 9 pages, 6 figures. Supporting information files available at http://filrad.homelinux.or
    corecore