6,964 research outputs found

    Viscoelasticity and Stokes-Einstein relation in repulsive and attractive colloidal glasses

    Full text link
    We report a numerical investigation of the visco-elastic behavior in models for steric repulsive and short-range attractive colloidal suspensions, along different paths in the attraction-strength vs packing fraction plane. More specifically, we study the behavior of the viscosity (and its frequency dependence) on approaching the repulsive glass, the attractive glass and in the re-entrant region where viscosity shows a non monotonic behavior on increasing attraction strength. On approaching the glass lines, the increase of the viscosity is consistent with a power-law divergence with the same exponent and critical packing fraction previously obtained for the divergence of the density fluctuations. Based on mode-coupling calculations, we associate the increase of the viscosity with specific contributions from different length scales. We also show that the results are independent on the microscopic dynamics by comparing newtonian and brownian simulations for the same model. Finally we evaluate the Stokes-Einstein relation approaching both glass transitions, finding a clear breakdown which is particularly strong for the case of the attractive glass.Comment: 12 pages; sent to J. Chem. Phy

    The influence of bond-rigidity and cluster diffusion on the self-diffusion of hard spheres with square-well interaction

    Get PDF
    Hard spheres interacting through a square-well potential were simulated using two different methods: Brownian Cluster Dynamics (BCD) and Event Driven Brownian Dynamics (EDBD). The structure of the equilibrium states obtained by both methods were compared and found to be almost the identical. Self diffusion coefficients (DD) were determined as a function of the interaction strength. The same values were found using BCD or EDBD. Contrary the EDBD, BCD allows one to study the effect of bond rigidity and hydrodynamic interaction within the clusters. When the bonds are flexible the effect of attraction on DD is relatively weak compared to systems with rigid bonds. DD increases first with increasing attraction strength, and then decreases for stronger interaction. Introducing intra-cluster hydrodynamic interaction weakly increases DD for a given interaction strength. Introducing bond rigidity causes a strong decrease of DD which no longer shows a maximum as function of the attraction strength

    Revealing the tidal scars of the Small Magellanic Cloud

    Full text link
    Due to their close proximity, the Large and Small Magellanic Clouds (SMC/LMC) provide natural laboratories for understanding how galaxies form and evolve. With the goal of determining the structure and dynamical state of the SMC, we present new spectroscopic data for ∼\sim 3000 SMC red giant branch stars observed using the AAOmega spectrograph at the Anglo-Australian Telescope. We complement our data with further spectroscopic measurements from previous studies that used the same instrumental configuration and proper motions from the \textit{Gaia} Data Release 2 catalogue. Analysing the photometric and stellar kinematic data, we find that the SMC centre of mass presents a conspicuous offset from the velocity centre of its associated \mbox{H\,{\sc i}} gas, suggesting that the SMC gas is likely to be far from dynamical equilibrium. Furthermore, we find evidence that the SMC is currently undergoing tidal disruption by the LMC within 2\,kpc of the centre of the SMC, and possibly all the way in to the very core. This is evidenced by a net outward motion of stars from the SMC centre along the direction towards the LMC and apparent tangential anisotropy at all radii. The latter is expected if the SMC is undergoing significiant tidal stripping, as we demonstrate using a suite of NN-body simulations of the SMC/LMC system disrupting around the Milky Way. These results suggest that dynamical models for the SMC that assume a steady state will need to be revisited.Comment: Revised version submitted to MNRAS after referee report, 18 pages, 18 figure

    Review of recent advances in index flood estimation

    No full text
    International audienceIndex flood estimation for regional flood frequency analysis needs to be based on the information available. The most appropriate method depends on the specific application and its choice requires a problem-oriented analysis. This paper presents a simple theoretical framework to deal with index flood estimation for a specific river site. The methodological approaches available for the purpose are reviewed. For each, the information required is specified and the reliability of the estimate, particularly desirable in risk analysis and management, is discussed. Where flood observations are lacking, indirect estimation must be undertaken using scenarios including those commonly met in hydrological practice; generally, these depend on the amount and type of information available. For each scenario, the methodologies are outlined, in order of the expected degree of complexity. After a guided analysis, an investigator can adopt the method providing the best tradeoff between effort in collecting and handling data and the resultant reliability which can be expected. Keywords: direct and indirect methods, index flood estimation, reliability, scenarios

    Non-gaussian effects in the cage dynamics of polymers

    Full text link
    The correlation between the fast cage dynamics and structural relaxation is investigated in a model polymer system. It is shown that the cage vibration amplitude, as expressed by the Debye-Waller factor, and the relaxation time τα\tau_\alpha collapse on a single universal curve with a simple analytic form when the temperature, the density, the chain length and the monomer-monomer interaction potential are changed. For the physical states with the same τα\tau_\alpha coincidence of the mean-square displacement, the intermediate scattering function and the non-Gaussian parameter is observed in a wide time window spanning from the ballistic regime to the onset of the Rouse dynamics driven by the chain connectivity. The role of the non-Gaussian effects is discussed.Comment: 8 pages, 5 figure

    Boosting infrared energy transfer in 3D nanoporous gold antennas

    Get PDF
    The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light–matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light–matter coupling at the vibrational absorption frequency of silica at 1240 cm−1 through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical–chemical reactions

    The Star Formation Law in Nearby Galaxies on Sub-Kpc Scales

    Full text link
    (Abridged) We present a comprehensive analysis of the relationship between star formation rate surface density (SFR SD) and gas surface density (gas SD) at sub-kpc resolution in a sample of 18 nearby galaxies. We use high resolution HI data from THINGS, CO data from HERACLES and BIMA SONG, 24 micron data from the Spitzer Space Telescope, and UV data from GALEX. We target 7 spiral galaxies and 11 late-type/dwarf galaxies and investigate how the star formation law differs between the H2-dominated centers of spiral galaxies, their HI-dominated outskirts and the HI-rich late-type/dwarf galaxies. We find that a Schmidt-type power law with index N=1.0+-0.2 relates the SFR SD and the H2 SD across our sample of spiral galaxies, i.e., that H2 forms stars at a constant efficiency in spirals. The average molecular gas depletion time is ~2*10^9 yrs. We interpret the linear relation and constant depletion time as evidence that stars are forming in GMCs with approximately uniform properties and that the H2 SD may be more a measure of the filling fraction of giant molecular clouds than changing conditions in the molecular gas. The relationship between total gas SD and SFR SD varies dramatically among and within spiral galaxies. Most galaxies show little or no correlation between the HI SD and the SFR SD. As a result, the star formation efficiency (SFE = SFR SD / gas SD) varies strongly across our sample and within individual galaxies. We show that in spirals the SFE is a clear function of radius, while the dwarf galaxies in our sample display SFEs similar to those found in the outer optical disks of the spirals. Another general feature of our sample is a sharp saturation of the HI SD at ~9 M_sol/pc^2 in both the spiral and dwarf galaxies.Comment: Accepted for publication in the AJ special THINGS issue. For a high-resolution version visit: http://www.mpia.de/THINGS/Publications.htm

    Infrared dust emission in the outer disk of M51

    Get PDF
    We examine faint infrared emission features detected in Spitzer Space Telescope images of M51, which are associated with atomic hydrogen in the outer disk and tidal tail at R greater than R_25 (4.9', ~14 kpc at d=9.6 Mpc). The infrared colors of these features are consistent with the colors of dust associated with star formation in the bright disk. However, the star formation efficiency (as a ratio of star formation rate to neutral gas mass) implied in the outer disk is lower than that in the bright disk of M51 by an order of magnitude, assuming a similar relationship between infrared emission and star formation rate in the inner and outer disks.Comment: 13 pages in manuscript form, 2 figures; download PDF of manuscript with original-resolution Figure 1 at http://www.eg.bucknell.edu/physics/thornley/thornleym51.pd

    Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy

    Full text link
    High-harmonics generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechanism that leads to the harmonics generation. Recently, we have demonstrated the ability to resolve the first stage of the process -- field induced tunnel ionization -- by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study -- modifying the fundamental wavelength, intensity and atomic system -- we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems.Comment: 11 pages, 5 figure

    Complex phenotype in an Italian family with a novel mutation in SPG3A.

    Get PDF
    Mutations in the SPG3A gene represent a significant cause of autosomal dominant hereditary spastic paraplegia with early onset and pure phenotype. We describe an Italian family manifesting a complex phenotype, characterized by cerebellar involvement in the proband and amyotrophic lateral sclerosis-like syndrome in her father, in association with a new mutation in SPG3A. Our findings further widen the notion of clinical heterogeneity in SPG3A mutations
    • …
    corecore