150 research outputs found

    Constraining the nuclear equation of state at subsaturation densities

    Get PDF
    Only one third of the nucleons in 208^{208}Pb occupy the saturation density area. Consequently nuclear observables related to average properties of nuclei, such as masses or radii, constrain the equation of state (EOS) not at saturation density but rather around the so-called crossing density, localised close to the mean value of the density of nuclei: ρ\rho\simeq0.11 fm3^{-3}. This provides an explanation for the empirical fact that several EOS quantities calculated with various functionals cross at a density significantly lower than the saturation one. The third derivative M of the energy at the crossing density is constrained by the giant monopole resonance (GMR) measurements in an isotopic chain rather than the incompressibility at saturation density. The GMR measurements provide M=1110 ±\pm 70 MeV (6% uncertainty), whose extrapolation gives K_\infty=230 ±\pm 40 MeV (17% uncertainty).Comment: 4 pages, 4 figure

    Probing the chemistry of CdS paints in The Scream by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques

    Full text link
    The degradation of cadmium sulfide (CdS)-based oil paints is a phenomenon potentially threatening the iconic painting The Scream (ca. 1910) by Edvard Munch (Munch Museum, Oslo) that is still poorly understood. Here, we provide evidence for the presence of cadmium sulfate and sulfites as alteration products of the original CdS-based paint and explore the external circumstances and internal factors causing this transformation. Macroscale in situ noninvasive spectroscopy studies of the painting in combination with synchrotron-radiation x-ray microspectroscopy investigations of a microsample and artificially aged mock-ups show that moisture and mobile chlorine compounds are key factors for promoting the oxidation of CdS, while light (photodegradation) plays a less important role. Furthermore, under exposure to humidity, parallel/secondary reactions involving dissolution, migration through the paint, and recrystallization of water-soluble phases of the paint are associated with the formation of cadmium sulfates

    The first determination of Generalized Polarizabilities of the proton by a Virtual Compton Scattering experiment

    Get PDF
    Absolute differential cross sections for the reaction (e+p -> e+p+gamma) have been measured at a four-momentum transfer with virtuality Q^2=0.33 GeV^2 and polarization \epsilon = 0.62 in the range 33.6 to 111.5 MeV/c for the momentum of the outgoing photon in the photon-proton center of mass frame. The experiment has been performed with the high resolution spectrometers at the Mainz Microtron MAMI. From the photon angular distributions, two structure functions which are a linear combination of the generalized polarizabilities have been determined for the first time.Comment: 4 pages, 3 figure

    Methylome analysis of extreme chemoresponsive patients identifies novel markers of platinum sensitivity in high-grade serous ovarian cancer

    Get PDF
    Background: Despite an early response to platinum-based chemotherapy in advanced stage high-grade serous ovarian cancer (HGSOC), the majority of patients will relapse with drug-resistant disease. Aberrant epigenetic alterations like DNA methylation are common in HGSOC. Differences in DNA methylation are associated with chemoresponse in these patients. The objective of this study was to identify and validate novel epigenetic markers of chemoresponse using genome-wide analysis of DNA methylation in extreme chemoresponsive HGSOC patients. Methods: Genome-wide next-generation sequencing was performed on methylation-enriched tumor DNA of two HGSOC patient groups with residual disease, extreme responders (>= 18 months progression-free survival (PFS), n = 8) and non-responders ( Results: Integrated genome-wide methylome and expression analysis identified 45 significantly differentially methylated and expressed genes between two chemoresponse groups. Four genes FZD10, FAM83A, MYO18B, and MKX were successfully validated in an external set of extreme chemoresponsive HGSOC patients. High FZD10 and MKX methylation were related with extreme responders and high FAM83A and MYO18B methylation with non-responders. In publicly available advanced stage HGSOC datasets, FZD10 and MKX methylation levels were associated with PFS. High FZD10 methylation was strongly associated with improved PFS in univariate analysis (hazard ratio (HR) = 0.43; 95% CI, 0.27-0.71; P = 0.001) and multivariate analysis (HR = 0.39; 95% CI, 0.23-0.65; P = 0.003). Consistently, low FZD10 expression was associated with improved PFS (HR = 1.36; 95% CI, 0.99-1.88; P = 0.058). FZD10 silencing caused significant sensitization towards cisplatin treatment in survival assays and apoptosis assays. Conclusions: By applying genome-wide integrated methylome analysis on extreme chemoresponsive HGSOC patients, we identified novel clinically relevant, epigenetically-regulated markers of platinum-sensitivity in HGSOC patients. The clinical potential of these markers in predictive and therapeutic approaches has to be further validated in prospective studies

    Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development

    Get PDF
    Nucleotide Excision Repair (NER), which removes a variety of helix-distorting lesions from DNA, is initiated by two distinct DNA damage-sensing mechanisms. Transcription Coupled Repair (TCR) removes damage from the active strand of transcribed genes and depends on the SWI/SNF family protein CSB. Global Genome Repair (GGR) removes damage present elsewhere in the genome and depends on damage recognition by the XPC/RAD23/Centrin2 complex. Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light. Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans. In C. elegans, involvement of TCR and GGR in the UV-induced DNA damage response changes during development. In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged. Furthermore, we identify four ISWI/Cohesin and four SWI/SNF family chromatin remodeling factors that are implicated in the UV damage response in a developmental stage dependent manner. These in vivo studies strongly suggest that involvement of different repair pathways and chromatin remodeling proteins in UV-induced DNA repair depends on developmental stage of cells

    A united statement of the global chiropractic research community against the pseudoscientific claim that chiropractic care boosts immunity.

    Get PDF
    BACKGROUND: In the midst of the coronavirus pandemic, the International Chiropractors Association (ICA) posted reports claiming that chiropractic care can impact the immune system. These claims clash with recommendations from the World Health Organization and World Federation of Chiropractic. We discuss the scientific validity of the claims made in these ICA reports. MAIN BODY: We reviewed the two reports posted by the ICA on their website on March 20 and March 28, 2020. We explored the method used to develop the claim that chiropractic adjustments impact the immune system and discuss the scientific merit of that claim. We provide a response to the ICA reports and explain why this claim lacks scientific credibility and is dangerous to the public. More than 150 researchers from 11 countries reviewed and endorsed our response. CONCLUSION: In their reports, the ICA provided no valid clinical scientific evidence that chiropractic care can impact the immune system. We call on regulatory authorities and professional leaders to take robust political and regulatory action against those claiming that chiropractic adjustments have a clinical impact on the immune system

    Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    Get PDF
    Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.</p
    corecore