41 research outputs found

    Probing intrinsic transport properties of single metal nanowires: Direct-write contact formation using a focused ion beam

    Get PDF
    The transport characteristics of 70-nm-diameter platinum nanowires (NWs), fabricated using a pore-templated electrodeposition process and individually contacted using a focused ion beam (FIB) method, are reported. This approach yields nanowire devices with low contact resistances (similar to400 Omega) and linear current-voltage characteristics for current densities up to 65 kA/cm(2). The intrinsic nanowire resistivity (33+/-5 muOmega cm) indicates significant contributions from surface- and grain-boundary scattering mechanisms. Fits to the temperature dependence of the intrinsic NW resistance confirm that grain-boundary scattering dominates surface scattering (by more than a factor of 2) at all temperatures. Our results demonstrate that FIB presents a rapid and flexible method for the formation of low-resistance ohmic contacts to individual metal nanowires, allowing intrinsic nanowire transport properties to be probed

    Pareto-Optimization of HTS CICC for High-Current Applications in Self-Field

    Get PDF
    The ENEA superconductivity laboratory developed a novel design for Cable-in-Conduit Conductors (CICCs) comprised of stacks of 2nd-generation REBCO coated conductors. In its original version, the cable was made up of 150 HTS tapes distributed in five slots, twisted along an aluminum core. In this work, taking advantage of a 2D finite element model, able to estimate the cable's current distribution in the cross-section, a multiobjective optimization procedure was implemented. The aim of optimization was to simultaneously maximize both engineering current density and total current flowing inside the tapes when operating in self-field, by varying the cross-section layout. Since the optimization process involved both integer and real geometrical variables, the choice of an evolutionary search algorithm was strictly necessary. The use of an evolutionary algorithm in the frame of a multiple objective optimization made it an obliged choice to numerically approach the problem using a nonstandard fast-converging optimization algorithm. By means of this algorithm, the Pareto frontiers for the different configurations were calculated, providing a powerful tool for the designer to achieve the desired preliminary operating conditions in terms of engineering current density and/or total current, depending on the specific application field, that is, power transmission cable and bus bar systems

    Charge transport in a CoPt3 nanocrystal microwire

    Get PDF
    The electrical characteristics of single CoPt3 nanocrystal microwires formed by magnetic field-directed growth from colloidal solutions are presented. The wires comprise disordered assemblies of discrete nanocrystals, separated from each other by protective organic ligand shells. Electrical data indicate that the activated charge transport properties of the wires are determined by the nanocrystal charging energy, governed by the size and capacitance of the individual nanocrystals. Focused ion beam-assisted deposition of Pt metal at the wire-electrode junctions is employed to optimize the wire-electrode contacts, whilst maintaining the nanocrystal-dominated transport characteristics of these one-dimensional nanocrystal structures. (C) 2004 American Institute of Physics. (DOI:10.1063/1.1830684

    Enhanced perioperative care in emergency general surgery:the WSES position paper

    Get PDF
    Enhanced perioperative care protocols become the standard of care in elective surgery with a significant improvement in patients' outcome. The key element of the enhanced perioperative care protocol is the multimodal and interdisciplinary approach targeted to the patient, focused on a holistic approach to reduce surgical stress and improve perioperative recovery. Enhanced perioperative care in emergency general surgery is still a debated topic with little evidence available. The present position paper illustrates the existing evidence about perioperative care in emergency surgery patients with a focus on each perioperative intervention in the preoperative, intraoperative and postoperative phase. For each item was proposed and approved a statement by the WSES collaborative group.</p

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Impact of Hysteresis Losses in Hybrid (HTS-LTS) Coils for Fusion Applications

    No full text
    Several conductor designs featuring High Temperature Superconducting (HTS) stacked tapes for fusion coils are being proposed. These conductors are planned to operate in time-varying magnetic field and current; thus, the estimation of AC losses is fundamental for the conductor design and the accurate analysis of its performance in operation. The case study of an HTS conductor proposed for the hybrid (HTS-LTS) Central Solenoid coil for the EU DEMO tokamak is considered in this work. Here, a numerical model based on the finite element method (FEM) and the H-formulation is used, in order to estimate the hysteresis losses. The FEM model is first benchmarked against available analytical formulae as well as available literature data. Then it is applied to the real case operational scenario. It is shown that for the conductor design analyzed, the coupling losses are orders of magnitude lower than the hysteresis ones. The impact of the hysteresis+coupling losses on the temperature margin of the coil is assessed with a thermal-hydraulic model. It is shown that the heat generated in the HTS layers is partially transferred to the LTS layers, leading these layers to quench. An alternative conductor concept is also analyzed, showing that, however, in the top and bottom modules of the CS coil, due to the bending of the magnetic field, a too large heat deposition is present

    On the mechanisms governing the critical current reduction in Nb3_{3}Sn Rutherford cables under transverse stress

    No full text
    Within the framework of the HiLumi-LHC project, CERN is currently manufacturing 11 T dipole and quadrupole accelerator magnets using state-of-the-art Nb3_{3}Sn Rutherford cables. Even higher magnetic fields are considered by the Hadron Future Circular Collider (FCC-hh) design study, which plans to develop 16 T Nb3_{3}Sn bending dipoles. In such high-field magnets, the design pre-stress can reach considerable values (150–200 MPa) and, since Nb3_{3}Sn is a brittle compound, this can constitute a technological difficult challenge. Due to the significant impact that a transverse load can have on the performances of a Nb3_{3}Sn magnet, CERN has launched a campaign of critical current measurements of reacted and impregnated Nb3_{3}Sn cables subjected to transverse pressure up to about 210 MPa. In this paper, results obtained on 18-strand 10-mm-wide cable sample based on a 1-mm-diameter powder-in-tube (PIT) wire are presented. The tests were carried out on a 2-m-long sample by using the FReSCa test station, at T = 4.3 K and background magnetic fields up to 9.6 T. For applied pressures below ≈ 130 MPa, only reversible reductions of the critical current, Ic_{c}, are observed. At higher pressures, a permanent Ic_{c} reduction occurs; such irreversible behaviour is due to the residual stresses generated by the plastic deformations of the copper stabilizer. This type of current reduction, whether reversible or not, is fully governed by the strain-induced variations of the upper critical field, Bc2_{c2}. At higher pressures, estimated between 180 and 210 MPa, it is indeed plausible to believe that cracking of filaments occurs, with detrimental consequences for the Nb3_{3}Sn cable’s electrical performances. The complete set of critical current data here presented, collected at different pressures and as a function of the applied magnetic field, allows for the first time to investigate the evolution of superconducting parameters such as the upper critical field Bc2_{c2} in the irreversibility region, where both the effects of Cu matrix plasticization and/or cracking of filaments may occur. The experimental approach and data interpretation have a general value and can be applied to any typology of Rutherford cable
    corecore