20,397 research outputs found

    Quantization of the String Inspired Dilaton Gravity and the Birkhoff Theorem

    Get PDF
    We develop a simple scheme of quantization for the dilaton CGHS model without scalar fields, that uses the Gupta-Bleuler approach for the string fields. This is possible because the constraints can be linearized classically, due to positivity conditions that are present in the model (and not in the general string case). There is no ambiguity nor anomalies in the quantization. The expectation values of the metric and dilaton fields obey the classical requirements, thus exhibiting at the quantum level the Birkhoff theorem.Comment: 15 pages, Plain TeX, a shortened version will appear in Physics Letters

    The evolution of the disc variability along the hard state of the black hole transient GX 339-4

    Get PDF
    We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak-frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy-dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high frequency (5-20 Hz) fractional rms at high energies, with less than 10 percent scatter. This reinforces previous claims suggesting that the high frequency PSD solely scales with BH mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ~30 percent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    Tracing the reverberation lag in the hard state of black hole X-ray binaries

    Get PDF
    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous RXTE observations to obtain broad-band energy coverage of both the disc and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability signal-to-noise ratio (e.g. typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (~0.05-9 Hz) we observe the hard lags intrinsic to the power law component, already well-known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disc variability. At low-frequencies (long time scales) the disc component always leads the power law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high-frequencies (short time scales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disc-fraction increase. This suggests that the distance between the X-ray source and the region of the optically-thick disc where reprocessing occurs, gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disc truncation.Comment: 15 pages, 9 figures, 2 tables, accepted for publication in Ap

    Contrasting Supersymmetry and Universal Extra Dimensions at Colliders

    Full text link
    We contrast the experimental signatures of low energy supersymmetry and the model of Universal Extra Dimensions and discuss various methods for their discrimination at hadron and lepton colliders. We study the discovery reach of hadron colliders for level 2 Kaluza-Klein modes, which would indicate the presence of extra dimensions. We also investigate the possibility to differentiate the spins of the superpartners and KK modes by means of the asymmetry method of Barr. We then review the methods for discriminating between the two scenarios at a high energy linear collider such as CLIC. We consider the processes of Kaluza-Klein muon pair production in universal extra dimensions in parallel to smuon pair production in supersymmetry. We find that the angular distributions of the final state muons, the energy spectrum of the radiative return photon and the total cross-section measurement are powerful discriminators between the two models.Comment: 6 pages, 8 figures, to appear in the proceedings of the 2005 International Linear Collider Workshop, Stanford, US

    Second-order quantum nonlinear optical processes in single graphene nanostructures and arrays

    Get PDF
    Intense efforts have been made in recent years to realize nonlinear optical interactions at the single-photon level. Much of this work has focused on achieving strong third-order nonlinearities, such as by using single atoms or other quantum emitters while the possibility of achieving strong second-order nonlinearities remains unexplored. Here, we describe a novel technique to realize such nonlinearities using graphene, exploiting the strong per-photon fields associated with tightly confined graphene plasmons in combination with spatially nonlocal nonlinear optical interactions. We show that in properly designed graphene nanostructures, these conditions enable extremely strong internal down-conversion between a single quantized plasmon and an entangled plasmon pair, or the reverse process of second harmonic generation. A separate issue is how such strong internal nonlinearities can be observed, given the nominally weak coupling between these plasmon resonances and free-space radiative fields. On one hand, by using the collective coupling to radiation of nanostructure arrays, we show that the internal nonlinearities can manifest themselves as efficient frequency conversion of radiative fields at extremely low input powers. On the other hand, the development of techniques to efficiently couple to single nanostructures would allow these nonlinear processes to occur at the level of single input photons.Comment: 25 pages, 6 figure

    The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic centre

    Get PDF
    We report on a detailed study of the spectral and temporal properties of the neutron star low mass X-ray binary SLX 1737-282, which is located only ~1degr away from Sgr A. The system is expected to have a short orbital period, even within the ultra-compact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 years apart. We infer (0.5-10 keV) X-ray luminosities in the range 3-6 x10^35erg s-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) black body component plus a Comptonized emission component with {\Gamma} ~1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ~ 20 per cent fractional root mean square amplitude of the fast variability (0.1 - 7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is >7 keV for the Suzaku observation, but it is measured to be as low as ~2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001 - 7 Hz). Finally, we investigated the origin of the low frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to 65 degr unless the orbital period is longer than 11 hr (i.e. the length of the XMM-Newton observation).Comment: 7 pages, 4 figures, 1 table. Accepted for publication in MNRA

    Pierre Auger Data, Photons, and Top-Down Cosmic Ray Models

    Full text link
    We consider the ultra-high energy cosmic ray (UHECR) spectrum as measured by the Pierre Auger Observatory. Top-down models for the origin of UHECRs predict an increasing photon component at energies above about 1019.710^{19.7}eV. Here we present a simple prescription to compare the Auger data with a prediction assuming a pure proton component or a prediction assuming a changing primary component appropriate for a top-down model. We find that the UHECR spectrum predicted in top-down models is a good fit to the Auger data. Eventually, Auger will measure a composition-independent spectrum and will be capable of either confirming or excluding the quantity of photons predicted in top-down models.Comment: 8 pages, 3 figure
    corecore