5,321 research outputs found

    Probabilistic evaluation of n traces with no putative source: A likelihood ratio based approach in an investigative framework

    Get PDF
    Analysis of marks recovered from different crime scenes can be useful to detect a linkage between criminal cases, even though a putative source for the recovered traces is not available. This particular circumstance is often encountered in the early stage of investigations and thus, the evaluation of evidence association may provide useful information for the investigators. This association is evaluated here from a probabilistic point of view: a likelihood ratio based approach is suggested in order to quantify the strength of the evidence of trace association in the light of two mutually exclusive propositions, namely that the n traces come from a common source or from an unspecified number of sources. To deal with this kind of problem, probabilistic graphical models are used, in form of Bayesian networks and object-oriented Bayesian networks, allowing users to intuitively handle with uncertainty related to the inferential problem

    Looking for signatures of the Left-Right Twin Higgs model with the ATLAS detector at the LHC

    Get PDF
    The twin Higgs mechanism has recently been proposed to solve the little hierarchy problem. The phenomenology of this model is presented, and the possibility to observe some of the signatures predicted by this model using the ATLAS detector at the LHC is discussed

    Dynamics of supercooled liquids: density fluctuations and Mode Coupling Theory

    Full text link
    We write equations of motion for density variables that are equivalent to Newtons equations. We then propose a set of trial equations parameterised by two unknown functions to describe the exact equations. These are chosen to best fit the exact Newtonian equations. Following established ideas, we choose to separate these trial functions into a set representing integrable motions of density waves, and a set containing all effects of non-integrability. It transpires that the static structure factor is fixed by this minimum condition to be the solution of the Yvon-Born-Green (YBG) equation. The residual interactions between density waves are explicitly isolated in their Newtonian representation and expanded by choosing the dominant objects in the phase space of the system, that can be represented by a dissipative term with memory and a random noise. This provides a mapping between deterministic and stochastic dynamics. Imposing the Fluctuation-Dissipation Theorem (FDT) allows us to calculate the memory kernel. We write exactly the expression for it, following two different routes, i.e. using explicitly Newtons equations, or instead, their implicit form, that must be projected onto density pairs, as in the development of the well-established Mode Coupling Theory (MCT). We compare these two ways of proceeding, showing the necessity to enforce a new equation of constraint for the two schemes to be consistent. Thus, while in the first `Newtonian' representation a simple gaussian approximation for the random process leads easily to the Mean Spherical Approximation (MSA) for the statics and to MCT for the dynamics of the system, in the second case higher levels of approximation are required to have a fully consistent theory

    Random Walks Along the Streets and Canals in Compact Cities: Spectral analysis, Dynamical Modularity, Information, and Statistical Mechanics

    Get PDF
    Different models of random walks on the dual graphs of compact urban structures are considered. Analysis of access times between streets helps to detect the city modularity. The statistical mechanics approach to the ensembles of lazy random walkers is developed. The complexity of city modularity can be measured by an information-like parameter which plays the role of an individual fingerprint of {\it Genius loci}. Global structural properties of a city can be characterized by the thermodynamical parameters calculated in the random walks problem.Comment: 44 pages, 22 figures, 2 table

    Microscopic dynamics in liquid metals: the experimental point of view

    Full text link
    The experimental results relevant for the understanding of the microscopic dynamics in liquid metals are reviewed, with special regards to the ones achieved in the last two decades. Inelastic Neutron Scattering played a major role since the development of neutron facilities in the sixties. The last ten years, however, saw the development of third generation radiation sources, which opened the possibility of performing Inelastic Scattering with X rays, thus disclosing previously unaccessible energy-momentum regions. The purely coherent response of X rays, moreover, combined with the mixed coherent/incoherent response typical of neutron scattering, provides enormous potentialities to disentangle aspects related to the collectivity of motion from the single particle dynamics. If the last twenty years saw major experimental developments, on the theoretical side fresh ideas came up to the side of the most traditional and established theories. Beside the raw experimental results, therefore, we review models and theoretical approaches for the description of microscopic dynamics over different length-scales, from the hydrodynamic region down to the single particle regime, walking the perilous and sometimes uncharted path of the generalized hydrodynamics extension. Approaches peculiar of conductive systems, based on the ionic plasma theory, are also considered, as well as kinetic and mode coupling theory applied to hard sphere systems, which turn out to mimic with remarkable detail the atomic dynamics of liquid metals. Finally, cutting edges issues and open problems, such as the ultimate origin of the anomalous acoustic dispersion or the relevance of transport properties of a conductive systems in ruling the ionic dynamic structure factor are discussed.Comment: 53 pages, 41 figures, to appear in "The Review of Modern Physics". Tentatively scheduled for July issu

    Mental health symptoms in children and adolescents during COVID-19 in Australia

    Get PDF
    OBJECTIVE: COVID-19 has led to disruptions to the lives of Australian families through social distancing, school closures, a temporary move to home-based online learning, and effective lockdown. Understanding the effects on child and adolescent mental health is important to inform policies to support communities as they continue to face the pandemic and future crises. This paper sought to report on mental health symptoms in Australian children and adolescents during the initial stages of the pandemic (May to November 2020) and to examine their association with child/family characteristics and exposure to the broad COVID-19 environment. METHODS: An online baseline survey was completed by 1327 parents and carers of Australian children aged 4 to 17 years. Parents/carers reported on their child’s mental health using five measures, including emotional symptoms, conduct problems, hyperactivity/inattention, anxiety symptoms and depressive symptoms. Child/family characteristics and COVID-related variables were measured. RESULTS: Overall, 30.5%, 26.3% and 9.5% of our sample scored in the high to very high range for emotional symptoms, conduct problems and hyperactivity/inattention, respectively. Similarly, 20.2% and 20.4% of our sample scored in the clinical range for anxiety symptoms and depressive symptoms, respectively. A child’s pre-existing mental health diagnosis, neurodevelopmental condition and chronic illness significantly predicted parent-reported child and adolescent mental health symptoms. Parental mental health symptoms, having a close contact with COVID-19 and applying for government financial assistance during COVID-19, were significantly associated with child and adolescent mental health symptoms. CONCLUSION: Our findings show that Australian children and adolescents experienced considerable levels of mental health symptoms during the initial phase of COVID-19. This highlights the need for targeted and effective support for affected youth, particularly for those with pre-existing vulnerabilities

    Mental health symptoms in children and adolescents during COVID-19 in Australia

    Full text link
    Objective: COVID-19 has led to disruptions to the lives of Australian families through social distancing, school closures, a temporary move to home-based online learning, and effective lockdown. Understanding the effects on child and adolescent mental health is important to inform policies to support communities as they continue to face the pandemic and future crises. This paper sought to report on mental health symptoms in Australian children and adolescents during the initial stages of the pandemic (May to November 2020) and to examine their association with child/family characteristics and exposure to the broad COVID-19 environment. Methods: An online baseline survey was completed by 1327 parents and carers of Australian children aged 4 to 17 years. Parents/carers reported on their child’s mental health using five measures, including emotional symptoms, conduct problems, hyperactivity/inattention, anxiety symptoms and depressive symptoms. Child/family characteristics and COVID-related variables were measured. Results: Overall, 30.5%, 26.3% and 9.5% of our sample scored in the high to very high range for emotional symptoms, conduct problems and hyperactivity/inattention, respectively. Similarly, 20.2% and 20.4% of our sample scored in the clinical range for anxiety symptoms and depressive symptoms, respectively. A child’s pre-existing mental health diagnosis, neurodevelopmental condition and chronic illness significantly predicted parent-reported child and adolescent mental health symptoms. Parental mental health symptoms, having a close contact with COVID-19 and applying for government financial assistance during COVID-19, were significantly associated with child and adolescent mental health symptoms. Conclusion: Our findings show that Australian children and adolescents experienced considerable levels of mental health symptoms during the initial phase of COVID-19. This highlights the need for targeted and effective support for affected youth, particularly for those with pre-existing vulnerabilities

    Casimir energy of massive MIT fermions in a Bohm-Aharonov background

    Get PDF
    We study the effect of a background flux string on the vacuum energy of massive Dirac fermions in 2+1 dimensions confined to a finite spatial region through MIT boundary conditions. We treat two admissible self-adjoint extensions of the Hamiltonian and compare the results. In particular, for one of these extensions, the Casimir energy turns out to be discontinuous at integer values of the flux.Comment: 16 pages, 3 figure

    Multilevel human secondary lymphoid immune system compartmentalization revealed by complementary imaging approaches.

    Get PDF
    Secondary human lymphoid tissue immune reactions take place in a highly coordinated environment with compartmentalization representing a fundamental feature of this organization. In situ profiling methodologies are indispensable for the understanding of this compartmentalization. Here, we propose a complementary experimental approach aiming to reveal different aspects of this process. The analysis of human tonsils, using a combination of single cell phenotypic analysis based on flow cytometry and multiplex imaging and mass spectrometry-based methodologies, revealed a compartmentalized organization at the cellular and molecular levels. More specifically, the skewed distribution of highly specialized immune cell subsets and relevant soluble mediators was accompanied by a compartmentalized localization of several lipids across different anatomical areas of the tonsillar tissue. The performance of such combinatorial experimental approaches could lead to the identification of novel in situ interactions and molecular targets for the in vivo manipulation of lymphoid organ, particularly the germinal center, immune reactions
    corecore