2,991 research outputs found
Effective spacetime from multi-dimensional gravity
We study the effective spacetimes in lower dimensions that can be extracted
from a multidimensional generalization of the Schwarzschild-Tangherlini
spacetimes derived by Fadeev, Ivashchuk and Melnikov ({\it Phys. Lett,} {\bf A
161} (1991) 98). The higher-dimensional spacetime has
dimensions, where and are the number of "internal" and "external" extra
dimensions, respectively. We analyze the effective spacetime obtained
after dimensional reduction of the external dimensions. We find that when
the extra dimensions are compact (i) the physics in lower dimensions is
independent of and the character of the singularities in higher dimensions,
and (ii) the total gravitational mass of the effective matter distribution
is less than the Schwarzshild mass. In contrast, when the extra dimensions
are large this is not so; the physics in does explicitly depend on
, as well as on the nature of the singularities in high dimensions, and the
mass of the effective matter distribution (with the exception of wormhole-like
distributions) is bigger than the Schwarzshild mass. These results may be
relevant to observations for an experimental/observational test of the theory.Comment: A typo in Eq. (24) is fixe
Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models
The strong gravitational field of neutron stars in the brany universe could
be described by spherically symmetric solutions with a metric in the exterior
to the brany stars being of the Reissner-Nordstrom type containing a brany
tidal charge representing the tidal effect of the bulk spacetime onto the star
structure. We investigate the role of the tidal charge in orbital models of
high-frequency quasiperiodic oscillations (QPOs) observed in neutron star
binary systems. We focus on the relativistic precession model. We give the
radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic
oscillations. We show how the standard relativistic precession model modified
by the tidal charge fits the observational data, giving estimates of the
allowed values of the tidal charge and the brane tension based on the processes
going in the vicinity of neutron stars. We compare the strong field regime
restrictions with those given in the weak-field limit of solar system
experiments.Comment: 26 pages, 6 figure
Onset of dielectric modes at 110K and 60K due to local lattice distortions in non-superconducting YBa_{2}Cu_{3}O_{6.0} crystals
We report the observation of two dielectric transitions at 110K and 60K in
the microwave response of non-superconducting YBa_{2}Cu_{3}O_{6.0} crystals.
The transitions are characterized by a change in polarizability and presence of
loss peaks, associated with overdamped dielectric modes. An explanation is
presented in terms of changes in polarizability of the apical O atoms in the
Ba-O layer, affected by lattice softening at 110K, due to change in buckling of
the Cu-O layer. The onset of another mode at 60K strongly suggests an
additional local lattice change at this temperature. Thus microwave dielectric
measurements are sensitive indicators of lattice softening which may be
relevant to superconductivity.Comment: 5 pages, 3 ps format figure
Anti-Spoofing for Text-Independent Speaker Verification: An Initial Database, Comparison of Countermeasures, and Human Performance
Due to copyright restrictions, the access to the full text of this article is only available via subscription.In this paper, we present a systematic study of the vulnerability of automatic speaker verification to a diverse range of spoofing attacks. We start with a thorough analysis of the spoofing effects of five speech synthesis and eight voice conversion systems, and the vulnerability of three speaker verification systems under those attacks. We then introduce a number of countermeasures to prevent spoofing attacks from both known and unknown attackers. Known attackers are spoofing systems whose output was used to train the countermeasures, while an unknown attacker is a spoofing system whose output was not available to the countermeasures during training. Finally, we benchmark automatic systems against human performance on both speaker verification and spoofing detection tasks.EPSRC ; TÜBİTA
Quantum entanglement and disentanglement of multi-atom systems
We present a review of recent research on quantum entanglement, with special
emphasis on entanglement between single atoms, processing of an encoded
entanglement and its temporary evolution. Analysis based on the density matrix
formalism are described. We give a simple description of the entangling
procedure and explore the role of the environment in creation of entanglement
and in disentanglement of atomic systems. A particular process we will focus on
is spontaneous emission, usually recognized as an irreversible loss of
information and entanglement encoded in the internal states of the system. We
illustrate some certain circumstances where this irreversible process can in
fact induce entanglement between separated systems. We also show how
spontaneous emission reveals a competition between the Bell states of a two
qubit system that leads to the recently discovered "sudden" features in the
temporal evolution of entanglement. An another problem illustrated in details
is a deterministic preparation of atoms and atomic ensembles in long-lived
stationary squeezed states and entangled cluster states. We then determine how
to trigger the evolution of the stable entanglement and also address the issue
of a steered evolution of entanglement between desired pairs of qubits that can
be achieved simply by varying the parameters of a given system.Comment: Review articl
Quintessential Phenomena in Higher Dimensional Space Time
The higher dimensional cosmology provides a natural setting to treat, at a
classical level, the cosmological effects of vacuum energy. Here we discuss two
situations where starting with an ordinary matter field without any equation of
state we end up with a Chaplygin type of gas apparently as a consequence of
extra dimensions. In the second case we study the quintessential phenomena in
higher dimensional spacetime with the help of a Chaplygin type of matter field.
The first case suffers from the disqualification that no dimensional reduction
occurs, which is, however, rectified in the second case. Both the models show
the sought after feature of occurrence of \emph{flip} in the rate of expansion.
It is observed that with the increase of dimensions the occurrence of
\emph{flip} is delayed for both the models, more in line with current
observational demands. Interestingly we see that depending on some initial
conditions our model admits QCDM, CDM and also Phantom like evolution
within a unified framework. Our solutions are general in nature in the sense
that when the extra dimensions are switched off the known 4D model is
recovered.Comment: 17 Pages, 7 figure
Bounce and cyclic cosmology in extended nonlinear massive gravity
We investigate non-singular bounce and cyclic cosmological evolutions in a
universe governed by the extended nonlinear massive gravity, in which the
graviton mass is promoted to a scalar-field potential. The extra freedom of the
theory can lead to certain energy conditions violations and drive cyclicity
with two different mechanisms: either with a suitably chosen scalar-field
potential under a given Stuckelberg-scalar function, or with a suitably chosen
Stuckelberg-scalar function under a given scalar-field potential. Our analysis
shows that extended nonlinear massive gravity can alter significantly the
evolution of the universe at both early and late times.Comment: 20 pages, 5 figures, version published at JCA
Embeddings in Spacetimes Sourced by Scalar Fields
The extension of the Campbell-Magaard embedding theorem to general relativity
with minimally-coupled scalar fields is formulated and proven. The result is
applied to the case of a self-interacting scalar field for which new embeddings
are found, and to Brans-Dicke theory. The relationship between Campbell-Magaard
theorem and the general relativity, Cauchy and initial value problems is
outlined.Comment: RevTEX (11 pages)/ To appear in the Journal of Mathematical Physic
Interacting Kasner-type cosmologies
It is well known that Kasner-type cosmologies provide a useful framework for
analyzing the three-dimensional anisotropic expansion because of the
simplification of the anisotropic dynamics. In this paper relativistic
multi-fluid Kasner-type scenarios are studied. We first consider the general
case of a superposition of two ideal cosmic fluids, as well as the particular
cases of non-interacting and interacting ones, by introducing a
phenomenological coupling function . For two-fluid cosmological scenarios
there exist only cosmological scaling solutions, while for three-fluid
configurations there exist not only cosmological scaling ones, but also more
general solutions. In the case of triply interacting cosmic fluids we can have
energy transfer from two fluids to a third one, or energy transfer from one
cosmic fluid to the other two. It is shown that by requiring the positivity of
energy densities there always is a matter component which violates the dominant
energy condition in this kind of anisotropic cosmological scenarios.Comment: Accepted for publication in Astrophysics &Space Science, 8 page
Measurement of the Generalized Forward Spin Polarizabilities of the Neutron
The generalized forward spin polarizabilities and of
the neutron have been extracted for the first time in a range from 0.1 to
0.9 GeV. Since is sensitive to nucleon resonances and
is insensitive to the resonance, it is expected that the
pair of forward spin polarizabilities should provide benchmark tests of the
current understanding of the chiral dynamics of QCD. The new results on
show significant disagreement with Chiral Perturbation Theory
calculations, while the data for at low are in good agreement
with a next-to-lead order Relativistic Baryon Chiral Perturbation theory
calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR
- …