69 research outputs found
Proteins involved in embryo-maternal interaction around the signalling of maternal recognition of pregnancy in the horse
During maternal recognition of pregnancy (MRP), a conceptus-derived signal leads to the persistence of the corpus luteum and the maintenance of gestation. In the horse, the nature of this signal remains to be elucidated. Several studies have focused on the changes in gene expression during MRP, but little information exists at the protein level. The aim of this study was to identify the proteins at the embryo-maternal interface around signalling of MRP in the horse (day 13) by means of mass spectrometry. A distinct influence of pregnancy was established, with 119 proteins differentially expressed in the uterine fluid of pregnant mares compared to cyclic mares and with upregulation of several inhibitors of the prostaglandin synthesis during pregnancy. By creating an overview of the proteins at the embryo-maternal interface in the horse, this study provides a solid foundation for further targeted studies of proteins potentially involved in embryo-maternal interactions, MRP and pregnancy loss in the horse
EASL-ERN position paper on liver involvement in patients with Fontan-type circulation
Fontan-type surgery is the final step in the sequential palliative surgical treatment of infants born with a univentricular heart. The resulting long-term haemodynamic changes promote liver damage, leading to Fontan-associated liver disease (FALD), in virtually all patients with Fontan circulation. Owing to the lack of a uniform definition of FALD and the competitive risk of other complications developed by Fontan patients, the impact of FALD on the prognosis of these patients is currently debatable. However, based on the increasing number of adult Fontan patients and recent research interest, the European Association for The Study of the Liver and the European Reference Network on Rare Liver Diseases thought a position paper timely. The aims of the current paper are: (1) to provide a clear definition and description of FALD, including clinical, analytical, radiological, haemodynamic, and histological features; (2) to facilitate guidance for staging the liver disease; and (3) to provide evidence- and experience-based recommendations for the management of different clinical scenarios.</p
Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery
An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks
Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy
How Do Employees Perceive Corporate Responsibility? Development and Validation of a Multidimensional Corporate Stakeholder Responsibility Scale
Recent research on the microfoundations of corporate social responsibility (CSR) has highlighted the need for improved measures to evaluate how stakeholders perceive and subsequently react to CSR initiatives. Drawing on stakeholder theory and data from five samples of employees (N = 3,772), the authors develop and validate a new measure of corporate stakeholder responsibility (CStR), which refers to an organization’s context-specific actions and policies designed to enhance the welfare of various stakeholder groups by accounting for the triple bottom line of economic, social, and environmental performance; it is conceptualized as a superordinate, multidimensional construct. Results from exploratory factor analyses, first- and second-order confirmatory factor analyses, and structural equation modeling provide strong evidence of the convergent, discriminant, incremental, and criterion-related validities of the proposed CStR scale. Two-wave longitudinal studies further extend prior theory by demonstrating that the higher-order CStR construct relates positively and directly to organizational pride and perceived organizational support, as well as positively and indirectly to organizational identification, job satisfaction, and affective commitment, beyond the contribution of overall organizational justice, ethical climate, and prior measures of perceived CSR
Rare and low-frequency coding variants alter human adult height
Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways
- …