865 research outputs found
The Development of Electrical Strain Gages
The design, construction, and properties of an electrical-resistance strain gage consisting of fine wires molded in a laminated plastic are described. The properties of such gages are discussed and also the problems of molding of wires in plastic materials, temperature compensation, and cementing and removal of the gages. Further work to be carried out on the strain gage, together with instrument problems, is discussed
Structure of solar coronal loops: from miniature to large-scale
We will use new data from the High-resolution Coronal Imager (Hi-C) with
unprecedented spatial resolution of the solar corona to investigate the
structure of coronal loops down to 0.2 arcsec. During a rocket flight Hi-C
provided images of the solar corona in a wavelength band around 193 A that is
dominated by emission from Fe XII showing plasma at temperatures around 1.5 MK.
We analyze part of the Hi-C field-of-view to study the smallest coronal loops
observed so far and search for the a possible sub-structuring of larger loops.
We find tiny 1.5 MK loop-like structures that we interpret as miniature coronal
loops. These have length of the coronal segment above the chromosphere of only
about 1 Mm and a thickness of less than 200 km. They could be interpreted as
the coronal signature of small flux tubes breaking through the photosphere with
a footpoint distance corresponding to the diameter of a cell of granulation. We
find loops that are longer than 50 Mm to have a diameter of about 2 arcsec or
1.5 Mm, consistent with previous observations. However, Hi-C really resolves
these loops with some 20 pixels across the loop. Even at this greatly improved
spatial resolution the large loops seem to have no visible sub-structure.
Instead they show a smooth variation in cross-section. The fact that the large
coronal loops do not show a sub-structure at the spatial scale of 0.1 arcsec
per pixel implies that either the densities and temperatures are smoothly
varying across these loops or poses an upper limit on the diameter of strands
the loops might be composed of. We estimate that strands that compose the 2
arcsec thick loop would have to be thinner than 15 km. The miniature loops we
find for the first time pose a challenge to be properly understood in terms of
modeling.Comment: Accepted for publication in A&A (Jun 19, 2013), 11 pages, 10 figure
Nuclear Structure based on Correlated Realistic Nucleon-Nucleon Potentials
We present a novel scheme for nuclear structure calculations based on
realistic nucleon-nucleon potentials. The essential ingredient is the explicit
treatment of the dominant interaction-induced correlations by means of the
Unitary Correlation Operator Method (UCOM). Short-range central and tensor
correlations are imprinted into simple, uncorrelated many-body states through a
state-independent unitary transformation. Applying the unitary transformation
to the realistic Hamiltonian leads to a correlated, low-momentum interaction,
well suited for all kinds of many-body models, e.g., Hartree-Fock or
shell-model. We employ the correlated interaction, supplemented by a
phenomenological correction to account for genuine three-body forces, in the
framework of variational calculations with antisymmetrised Gaussian trial
states (Fermionic Molecular Dynamics). Ground state properties of nuclei up to
mass numbers A<~60 are discussed. Binding energies, charge radii, and charge
distributions are in good agreement with experimental data. We perform angular
momentum projections of the intrinsically deformed variational states to
extract rotational spectra.Comment: 32 pages, 15 figure
Hadron Propagation in Medium: the Exclusive Process A(e,e'p)B in Few-Nucleon Systems
The mechanism of propagation of hadronic states in the medium is a key point
for understanding particle-nucleus and nucleus-nucleus scattering at high
energies. We have investigated the propagation of a baryon in the exclusive
process A(e,e'p)B in few-nucleon systems using realistic nuclear wave functions
and Glauber multiple scattering theory both in its original form and within a
generalized eikonal approximation. New results for the processes 3He(e,e'p)2H
and 4He(e,e'p)3H are compared with data recently obtained at the Thomas
Jefferson Laboratory (JLAB).Comment: 8 pages, 9 figures, Presented at the Fifth International Conference
on Perspectives in Hadronic Physics -Particle-Nucleus and Nucleus-Nucleus
Scattering at Relativistic Energies-, 22 - 26 May 2006, Trieste, Ital
Scaling in many-body systems and proton structure function
The observation of scaling in processes in which a weakly interacting probe
delivers large momentum to a many-body system simply reflects the
dominance of incoherent scattering off target constituents. While a suitably
defined scaling function may provide rich information on the internal dynamics
of the target, in general its extraction from the measured cross section
requires careful consideration of the nature of the interaction driving the
scattering process. The analysis of deep inelastic electron-proton scattering
in the target rest frame within standard many-body theory naturally leads to
the emergence of a scaling function that, unlike the commonly used structure
functions and , can be directly identified with the intrinsic proton
response.Comment: 11 pages, 4 figures. Proceedings of the 11th Conference on Recent
Progress in Many-Body Theories, Manchester, UK, July 9-13 200
Study of relativistic bound state wave functions in quasielastic (e,e'p) reactions
The unpolarized response functions of the quasielastic reaction are calculated for three different types of relativistic
bound state wave functions. The wave functions are obtained from relativistic
Hartree, relativistic Hartree-Fock and density dependent relativistic Hartree
calculations that reproduce the experimental charge radius of O. The
sensitivity of the unpolarized response functions to the single particle
structure of the different models is investigated in the relativistic plane
wave impulse approximation. Redistributions of the momentum dependence in the
longitudinal and transverse response function can be related to the binding
energy of the single particle states. The interference responses and
reveal a strong sensitivity to the small component of the relativistic
bound state wave function.Comment: 18 pages REVTEX, 5 figures include
Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects
Measurements of the ground-state nuclear spins, magnetic and quadrupole
moments of the copper isotopes from 61Cu up to 75Cu are reported. The
experiments were performed at the ISOLDE facility, using the technique of
collinear laser spectroscopy. The trend in the magnetic moments between the
N=28 and N=50 shell closures is reasonably reproduced by large-scale
shell-model calculations starting from a 56Ni core. The quadrupole moments
reveal a strong polarization of the underlying Ni core when the neutron shell
is opened, which is however strongly reduced at N=40 due to the parity change
between the and orbits. No enhanced core polarization is seen beyond
N=40. Deviations between measured and calculated moments are attributed to the
softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.Comment: 13 pagers, 19 figures, accepted by Physical Review
Quasi Free 238U (e,e'f)-Cross Section in Macroscopic-Microscopic Approach
We present the result of a theoretical study of inclusive quasi free
electrofission of U. The off-shell cross sections for the quasi free
reaction stage have been calculated within the Plane Wave Impulse Approximation
(PWIA), using a Macroscopic -Microscopic description of the proton and neutron
single particle momentum distributions. Electron wave function distortion
corrections were included using the effective momentum approximation, and the
Final State Interaction (FSI) effects were calculated using an optical
potential. The fissility for the proton single hole excited states of the
residual nucleus Pa was calculated both without and with contributions
of the pre-equilibrium emission of the particles. The fissility for
residual nuclei was calculated within the compound nucleus model.
The cross sections thus obtained were compared with available
experimental data.Comment: 26 pages, 7 figure
Toroidal quadrupole transitions associated to collective rotational-vibrational motions of the nucleus
In the frame of the algebraic Riemann Rotational Model one computes the
longitudinal, transverse and toroidal multipoles corresponding to the
excitations of low-lying levels in the ground state band of several even-even
nuclei by inelastic electron scattering (e,e'). Related to these transitions a
new quantity, which accounts for the deviations from the Siegert theorem, is
introduced. The intimate connection between the nuclear vorticity and the
dynamic toroidal quadrupole moment is underlined. Inelastic differential
cross-sections calculated at backscattering angles shows the dominancy of
toroidal form-factors over a broad range of momentum transfer.Comment: 11 pages in LaTex, 3 figures available by fax or mail, accepted for
publication in J.Phys.
Coherent and incoherent atomic scattering: Formalism and application to pionium interacting with matter
The experimental determination of the lifetime of pionium provides a very
important test on chiral perturbation theory. This quantity is determined in
the DIRAC experiment at CERN. In the analysis of this experiment, the breakup
probabilities of of pionium in matter are needed to high accuracy as a
theoretical input. We study in detail the influence of the target electrons.
They contribute through screening and incoherent effects. We use Dirac-Hartree-
Fock-Slater wavefunctions in order to determine the corresponding form factors.
We find that the inner-shell electrons contribute less than the weakly bound
outer electrons. Furthermore, we establish a more rigorous estimate for the
magnitude of the contributions form the transverse current (magnetic terms thus
far neglected in the calculations).Comment: Journal of Physics B: Atomic, Molecular and Optical Physics;
(accepted; 22 pages, 6 figures, 26 references) Revised version: more detailed
description of DIRAC experiment; failure of simplest models for incoherent
scattering demonstrated by example
- …