20 research outputs found
Recommended from our members
The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update
YesGalaxy (https://galaxyproject.org) is deployed globally, predominantly through free-to-use services, supporting user-driven research that broadens in scope each year. Users are attracted to public Galaxy services by platform stability, tool and reference dataset diversity, training, support and integration, which enables complex, reproducible, shareable data analysis. Applying the principles of user experience design (UXD), has driven improvements in accessibility, tool discoverability through Galaxy Labs/subdomains, and a redesigned Galaxy ToolShed. Galaxy tool capabilities are progressing in two strategic directions: integrating general purpose graphical processing units (GPGPU) access for cutting-edge methods, and licensed tool support. Engagement with global research consortia is being increased by developing more workflows in Galaxy and by resourcing the public Galaxy services to run them. The Galaxy Training Network (GTN) portfolio has grown in both size, and accessibility, through learning paths and direct integration with Galaxy tools that feature in training courses. Code development continues in line with the Galaxy Project roadmap, with improvements to job scheduling and the user interface. Environmental impact assessment is also helping engage users and developers, reminding them of their role in sustainability, by displaying estimated CO2 emissions generated by each Galaxy job.NIH [U41 HG006620, U24 HG010263, U24 CA231877, U01 CA253481]; US National Science Foundation [1661497, 1758800, 2216612]; computational resources are provided by the Advanced Cyberinfrastructure Coordination Ecosystem (ACCESS-CI), Texas Advanced Computing Center, and the JetStream2 scientific cloud. Funding for open access charge: NIH. ELIXIR IS and Travel grants; EU Horizon Europe [HORIZON-INFRA-2021-EOSC-01-04, 101057388]; EU Horizon Europe under the Biodiversity, Circular Economy and Environment program (REA.B.3, BGE 101059492); German Federal Ministry of Education and Research, BMBF [031 A538A de.NBI-RBC]; Ministry of Science, Research and the Arts Baden-Württemberg (MWK) within the framework of LIBIS/de.NBI Freiburg. Galaxy Australia is supported by the Australian BioCommons which is funded through Australian Government NCRIS investments from Bioplatforms Australia and the Australian Research Data Commons, as well as investment from the Queensland Government RICF program.Please note, contributors are listed in alphabetical order
Recommended from our members
The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update
YesGalaxy (https://galaxyproject.org) is deployed globally, predominantly through free-to-use services, supporting user-driven research that broadens in scope each year. Users are attracted to public Galaxy services by platform stability, tool and reference dataset diversity, training, support and integration, which enables complex, reproducible, shareable data analysis. Applying the principles of user experience design (UXD), has driven improvements in accessibility, tool discoverability through Galaxy Labs/subdomains, and a redesigned Galaxy ToolShed. Galaxy tool capabilities are progressing in two strategic directions: integrating general purpose graphical processing units (GPGPU) access for cutting-edge methods, and licensed tool support. Engagement with global research consortia is being increased by developing more workflows in Galaxy and by resourcing the public Galaxy services to run them. The Galaxy Training Network (GTN) portfolio has grown in both size, and accessibility, through learning paths and direct integration with Galaxy tools that feature in training courses. Code development continues in line with the Galaxy Project roadmap, with improvements to job scheduling and the user interface. Environmental impact assessment is also helping engage users and developers, reminding them of their role in sustainability, by displaying estimated CO2 emissions generated by each Galaxy job.NIH [U41 HG006620, U24 HG010263, U24 CA231877, U01 CA253481]; US National Science Foundation [1661497, 1758800, 2216612]; computational resources are provided by the Advanced Cyberinfrastructure Coordination Ecosystem (ACCESS-CI), Texas Advanced Computing Center, and the JetStream2 scientific cloud. Funding for open access charge: NIH. ELIXIR IS and Travel grants; EU Horizon Europe [HORIZON-INFRA-2021-EOSC-01-04, 101057388]; EU Horizon Europe under the Biodiversity, Circular Economy and Environment program (REA.B.3, BGE 101059492); German Federal Ministry of Education and Research, BMBF [031 A538A de.NBI-RBC]; Ministry of Science, Research and the Arts Baden-Württemberg (MWK) within the framework of LIBIS/de.NBI Freiburg. Galaxy Australia is supported by the Australian BioCommons which is funded through Australian Government NCRIS investments from Bioplatforms Australia and the Australian Research Data Commons, as well as investment from the Queensland Government RICF program
Habitat partitioning and vulnerability of sharks in the Great Barrier Reef Marine Park
Sharks present a critical conservation challenge, but little is known about their spatial distribution and vulnerability, particularly in complex seascapes such as Australia's Great Barrier Reef Marine Park (GBRMP). We review (1) the distribution of shark species among the primary habitats of the GBRMP (coral reefs, inshore/shelf, pelagic and deep-water habitats) (2) the relative exploitation of each species by fisheries, and (3) how current catch rates interact with their vulnerability and trophic index. Excluding rays and chimaeras, we identify a total of 82 shark species in the GBRMP. We find that shark research in the GBRMP has yielded little quantitative information on most species. Reef sharks are largely site-fidelic, but can move large distances and some regularly use non-reef habitats. Inshore and shelf sharks use coastal habitats either exclusively or during specific times in their life cycle (e.g. as nurseries). Virtually nothing is known about the distribution and habitat use of the GBRMP's pelagic and deep-water sharks. At least 46 species (53.5 %) are caught in one or more fisheries, but stock assessments are lacking for most. At least 17 of the sharks caught are considered highly vulnerable to exploitation. We argue that users of shark resources should be responsible for demonstrating that a fishery is sustainable before exploitation is allowed to commence or continue. This fundamental change in management principle will safeguard against stock collapses that have characterised many shark fisheries
Una nueva megaflora (maderas y hojas fósiles) del Mioceno del suroeste de la Patagonia
A new megaflora composed of fossil woods and leaves is described. The bearing sediments overlie the Santa Cruz Formation (early Miocene), making it one of the youngest fossil megafloras described from southern Patagonia. The fossil woods is carbonized and found as clasts within a conglomerate. It includes a few specimens representing Araucariaceae (Agathoxylon sp.), Podocarpaceae (Phyllocladoxylon sp.), Cupressaceae (Cupressinoxylon sp.) and two indeterminable angiosperms with anatomical features consistent with Nothofagaceae. Most leaves are assigned to Nothofagaceae while a few specimens are related to Lauraceae, Typhaceae, Leguminosae, and a conifer. The recovered assemblage suggests a temperate climate similar to that of northern Patagonia today, inhabited by extant relatives of the fossils described herein.Una nueva megaflora compuesta por maderas y hojas fósiles es presentada. Los sedimentos portadores sobreyacen a la Formación Santa Cruz (Mioceno inferior), por lo tanto es una de las megafloras más jóvenes del sur patagónico descripta. Las maderas fósiles están carbonizadas y se encuentran como clastos de un conglomerado. Están representadas por unos pocos especímenes de Araucariaceae (Agathoxylon sp.), Podocarpaceae (Phyllocladoxylon sp.), Cupressaceae (Cupressinoxylon sp.) y dos angiospermas no determinadas que poseen una anatomía consistente con la de las Nothofagaceae. Las hojas son en su mayoría asignadas a las Nothofagaceae, acompañadas por Lauraceae, Typhaceae, Leguminosae y una conifera. El conjunto de fósiles sugiere un clima templado similar al actual de la Patagonia norte, donde viven parientes vivos de los fósiles descriptos.Fil: Pujana, Roberto Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales; ArgentinaFil: Panti, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales; ArgentinaFil: Cuitiño, José Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: García Massini, Juan Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Cientificas y Transferencia Tecnológica de Anillaco; ArgentinaFil: Mirabelli, Sebastian Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales; Argentin