629 research outputs found

    Microscopic structure of a vortex line in superfluid neutron star matter

    Get PDF
    The microscopic structure of an isolated vortex line in superfluid neutron star matter is studied by solving the Bogoliubov-de Gennes equations. Our calculation, which is the starting point for a microscopic calculation of pinning forces in neutron stars, shows that the size of the vortex core varies differently with density, and is in general smaller than assumed in some earlier calculations of vortex pinning in neutron star crusts. The implications of this result are discussedComment: 5 pages, 2 figure

    Equiprobable Go/NoGo auditory ERP components: Adults vs. children

    Get PDF
    Abstract presented at the 23rd Australasian Society for Psychophysiology Conference, 20-22 Nov 2013, Wollongong, Australi

    Modern meson--exchange potential and superfluid neutron star crust matter

    Full text link
    In this work we study properties of neutron star crusts, where matter is expected to consist of nuclei surrounded by superfluid neutrons and a homogeneous background of relativistic electrons. The nuclei are disposed in a Coulomb lattice, and it is believed that the structure of the lattice influences considerably the specific heat of the neutronic matter inside the crust of a neutron star. Using a modern meson--exchange potential in the framework of a local--density approximation we calculate the neutronic specific heat accounting for various shapes of the Coulomb lattice, from spherical to non--spherical nuclear shapes. We find that a realistic nucleon--nucleon potential leads to a significant increase in the neutronic specific heat with respect to that obtained assuming a uniform neutron distribution. The increase is largest for the non--spherical phase of the crust. These results may have consequences for the thermal history of young neutron stars.Comment: Revtex, 5 pages, 4 figures included as uuencoded p

    Preliminary study on the assessment of visceral adipose tissue using dual-energy x-ray absorptiometry in chronic obstructive pulmonary disease

    Get PDF
    Background: Visceral adipose tissue (VAT) was shown to be increased in patients with chronic obstructive pulmonary disease (COPD) compared to control subjects with comparable body mass index (BMI). Our aim was to determine the relation of VAT by dual-energy x-ray absorptiometry (DEXA) in patients with COPD by disease severity, BMI, other indices of body composition and static lung volumes. Methods: 294 COPD patients admitted for rehabilitation were studied. Lung function, static lung volumes and body composition (i.e. BMI, waist circumference, fat-free mass, fat mass and fat distribution between android and gynoid fat mass) were assessed before entering pulmonary rehabilitation. VAT was estimated within the android region by using DEXA. Patients were stratified for gender, BMI (cut-off of 25 kg/m2) and GOLD stage. To assess the impact of VAT on lung volumes, patients were also stratified for VAT less and above 50th percentile. Results: Both male and female patients with more severe airflow limitation had significantly lower VAT values, but these differences disappeared after stratification for BMI. VAT was significantly and strongly correlated with other body composition parameters (all p < 0.001). Patients with moderate to severe airflow limitation and lower VAT had increased static lung hyperinflation and lower diffusing capacity for carbon monoxide. Nevertheless, multivariate stepwise regression models including for BMI, age, gender and forced expiratory volume in 1 s (FEV1) as confounders did not confirm an independent role for VAT on static lung hyperinflation and diffusion capacity. Conclusion: After stratification for BMI, VAT is comparable in moderate to very severe COPD patients. Furthermore, BMI and demographics, but not VAT, were independent predictors of static lung hyperinflation and diffusing capacity in COPD

    R-modes in Neutron Stars with Crusts: Turbulent Saturation, Spin-down, and Crust Melting

    Get PDF
    Rossby waves (r-modes) have been suggested as a means to regulate the spin periods of young or accreting neutron stars, and also to produce observable gravitational wave radiation. R-modes involve primarily transverse, incompressive motions of the star's fluid core. However, neutron stars gain crusts early in their lives: therefore, r-modes also imply shear in the fluid beneath the crust. We examine the criterion for this shear layer to become turbulent, and derive the rate of dissipation in the turbulent regime. Unlike dissipation from a viscous boundary layer, turbulent energy loss is nonlinear in mode energy and can therefore cause the mode to saturate at amplitudes typically much less than unity. This energy loss also reappears as heat below the crust. We study the possibility of crust melting as well as its implications for the spin evolution of low-mass X-ray binaries. Lastly, we identify some universal features of the spin evolution that may have observational consequences.Comment: 12 pages, 4 figures, submitted to Ap

    HASH(0x563d44119a80)

    Get PDF
    HASH(0x563d43e27db0)HASH(0x563d44003f78

    Variable maternal nutrition and growth hormone treatment in the second quarter of pregnancy in pigs alter semitendinosus muscle in adolescent progeny

    Get PDF
    Maternal nutrition and growth hormone (GH) treatment during early- to mid-pregnancy can each alter the subsequent growth and differentiation of muscle in progeny. We have investigated the effects of varying maternal nutrition and maternal treatment with porcine (p) GH during the second quarter of pregnancy in gilts on semitendinosus muscle cross-sectional area and fibre composition of progeny, and relationships between maternal and progeny measures and progeny muscularity. Fifty-three Large White×Landrace gilts, pregnant to Large White×Duroc boars, were fed either 2·2 kg (about 35 % ad libitum intake) or 3·0 kg commercial ration (13·5 MJ digestible energy, 150 g crude protein (N×6·25)/kg DM)/d and injected with 0, 4 or 8 mg pGH/d from day 25 to 50 of pregnancy, then all were fed 2·2 kg/d for the remainder of pregnancy. The higher maternal feed allowance from day 25 to 50 of pregnancy increased the densities of total and secondary fibres and the secondary:primary fibre ratio in semitendinosus muscles of their female progeny at 61 d of age postnatally. The densities of secondary and total muscle fibres in semitendinosus muscles of progeny were predicted by maternal weight before treatment and maternal plasma insulin-like growth factor-II during treatment. Maternal pGH treatment from day 25 to day 50 of pregnancy did not alter fibre densities, but increased the cross-sectional area of the semitendinosus muscle; this may be partially explained by increased maternal plasma glucose. Thus, maternal nutrition and pGH treatment during the second quarter of pregnancy in pigs independently alter muscle characteristics in progeny.Kathryn L. Gatford, Jason E. Ekert, Karina Blackmore, Miles J. De Blasio, Jodie M. Boyce, Julie A. Owens, Roger G. Campbell and Phillip C. Owen

    Semiclassical Approximation to Neutron Star Superfluidity Corrected for Proximity Effects

    Get PDF
    The inner crust of a neutron star is a superfluid and inhomogeneous system, consisting of a lattice of nuclei immersed in a sea of neutrons. We perform a quantum calculation of the associated pairing gap and compare it to the results one obtains in the Local Density Approximation (LDA). It is found that the LDA overestimates the spatial dependence of the gap, and leads to a specific heat of the system which is too large at low temperatures, as compared with the quantal result. This is caused by the neglect of proximity effects and the delocalized character of the single-particle wavefunctions close to the Fermi energy. It is possible to introduce an alternative, simple semiclassical approximation of the pairing gap which leads to a specific heat that is in good agreement with the quantum calculation.Comment: RevteX, 8 Postscript Figure
    corecore