6,448 research outputs found

    Data Management and Mining in Astrophysical Databases

    Full text link
    We analyse the issues involved in the management and mining of astrophysical data. The traditional approach to data management in the astrophysical field is not able to keep up with the increasing size of the data gathered by modern detectors. An essential role in the astrophysical research will be assumed by automatic tools for information extraction from large datasets, i.e. data mining techniques, such as clustering and classification algorithms. This asks for an approach to data management based on data warehousing, emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Clustering and classification techniques, on large datasets, pose additional requirements: computational and memory scalability with respect to the data size, interpretability and objectivity of clustering or classification results. In this study we address some possible solutions.Comment: 10 pages, Late

    Super-Pop Culture: With Great Power, a Greater Irresponsibility

    Get PDF
    Analysis of superhero mythology in American comic books and of its ideological contradictions, especially as regards the issue of social responsibility

    Fin loads and control-surface hinge moments measured in full-scale wind-tunnel tests on the X-24A flight vehicle

    Get PDF
    Fin loads and control surface hinge moments measured in full scale wind tunnel tests on X-24A flight vehicl

    CHC-COMP 2022: Competition Report

    Full text link
    CHC-COMP 2022 is the fifth edition of the competition of solvers for Constrained Horn Clauses. The competition was run in March 2022; the results were presented at the 9th Workshop on Horn Clauses for Verification and Synthesis held in Munich, Germany, on April 3, 2022. This edition featured six solvers, and eight tracks consisting of sets of linear and nonlinear clauses with constraints over linear integer arithmetic, linear real arithmetic, arrays, and algebraic data types. This report provides an overview of the organization behind the competition runs: it includes the technical details of the competition setup as well as presenting the results of the 2022 edition.Comment: In Proceedings HCVS/VPT 2022, arXiv:2211.10675. arXiv admin note: text overlap with arXiv:2109.04635, arXiv:2008.02939 by other author

    Hidden-variable theory versus Copenhagen quantum mechanics

    Full text link
    The main assumptions the Copenhagen quantum mechanics has been based on will be summarized and the known (not yet decided) contradiction between Einstein and Bohr will be newly analyzed. The given assumptions have been represented basically by time-dependent Schroedinger equation, to which some further assumptions have been added. Some critical comments have been raised against the given mathematical model structure by Pauli (1933) and by Susskind and Glogover (1964). They may be removed if only the Schroedinger equation is conserved and the additional assumptions are abandoned, as shown recently. It seems to be in contradiction to the numerous declarations that the Copenhagen model has been approved by experimental results. However, in the most of these experiments only the agreement with the mere Schroedinger equation has been tested. All mentioned assumptions have been tested practically only in the EPR experiment (measurement of coincidence light transmission through two polarizers) proposed originally by Einstein (1935). Also these experimental results have been interpreted as supporting the Copenhagen alternative, which has not been, however, true. In fact the microscopic world may be described correspondingly only with the help of the hidden-variable theory that is represented by the Schroedinger equation without mentioned additional assumptions, which has the consequence that the earlier interpretation gap between microscopic and macroscopic worlds has been removed. The only difference concerns the existence of discrete states. The possibilities of the human reason of getting to know the nature will be also shortly discussed in the beginning of this contribution.Comment: 10 pages, 2 figures; v2: local refinements and improvements of the tex

    Ge-Doped microstructured multicorefiber for customizable supercontinuum generation

    Get PDF
    Supercontinuum generation in a multicore fiber in which several uncoupled cores were doped with dissimilar concentrations of germanium was studied experimentally. Germanium doping provided control over the separation between the zero-dispersion wavelength and the 1064-nm wavelength of a Q-switched Nd:YAG pump laser. Supercontinua generated independently in each core of the same piece of fiber displayed clear and repeatable differences due to the influence of germanium doping on refractive index and four-wave mixing. The spectral evolution of the subnanosecond pump pulses injected into the different cores was accurately reproduced by numerical simulations

    Large-scale albuminuria screen for nephropathy models in chemically induced mouse mutants

    Get PDF
    Background/Aim: Phenotype-driven screening of a great pool of randomly mutant mice and subsequent selection of animals showing symptoms equivalent to human kidney diseases may result in the generation of novel suitable models for the study of the pathomechanisms and the identification of genes involved in kidney dysfunction. Methods: We carried out a large-scale analysis of ethylnitrosourea (ENU)-induced mouse mutants for albuminuria by using qualitative SDS-polyacrylamide gel electrophoresis. Results: The primary albuminuria screen preceded the comprehensive phenotypic mutation analysis in a part of the mice of the Munich ENU project to avoid loss of mutant animals as a consequence of prolonged suffering from severe nephropathy. The primary screen detected six confirmed phenotypic variants in 2,011 G1 animals screened for dominant mutations and no variant in 48 G3 pedigrees screened for recessive mutations. Further breeding experiments resulted in two lines showing a low phenotypic penetrance of albuminuria. The secondary albuminuria screen was carried out in mutant lines which were established in the Munich ENU project without preceding primary albuminuria analysis. Two lines showing increased plasma urea levels were chosen to clarify if severe kidney lesions are involved in the abnormal phenotype. This analysis revealed severe albuminuria in mice which are affected by a recessive mutation leading to increased plasma urea and cholesterol levels. Conclusion: Thus, the phenotypic selection of ENU-induced mutants according to the parameter proteinuria in principle demonstrates the feasibility to identify nephropathy phenotypes in ENU-mutagenized mice. Copyright (C) 2005 S. Karger AG, Basel

    Saturation of Turbulent Drag Reduction in Dilute Polymer Solutions

    Full text link
    Drag reduction by polymers in turbulent wall-bounded flows exhibits universal and non-universal aspects. The universal maximal mean velocity profile was explained in a recent theory. The saturation of this profile and the crossover back to the Newtonian plug are non-universal, depending on Reynolds number Re, concentration of polymer cpc_p and the degree of polymerization NpN_p. We explain the mechanism of saturation stemming from the finiteness of extensibility of the polymers, predict its dependence on cpc_p and NN in the limit of small cpc_p and large Re, and present the excellent comparison of our predictions to experiments on drag reduction by DNA.Comment: 4 pages, 4 figs., included, PRL, submitte
    corecore