104 research outputs found

    Search for nonstandard neutrino interactions with IceCube DeepCore

    Get PDF
    © 2018 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the »https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP 3 . As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral- and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is ϔΌτ=-0.0005, with a 90% C.L. allowed range of -0.0067<ϔΌτ<0.0081. This result is more restrictive than recent limits from other experiments for ϔΌτ. Furthermore, our result is complementary to a recent constraint on ϔΌτ using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the ÎŒ-τ sector

    The IceCube realtime alert system

    Get PDF
    Although high-energy astrophysical neutrinos were discovered in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts for the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole site and at IceCube facilities in the north that have enabled this fast follow-up program to be implemented. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries

    Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube

    Get PDF
    The American Astronomical Society. All rights reserved.. The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos, which is inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5σ. This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from 2010 May to 2012 May. We show that compared to the classic approach using tracks, this statistically independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations â‰Č-30

    Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore

    Get PDF
    We present a search for a neutrino signal from dark matter self-annihilations in the Milky Way using the IceCube Neutrino Observatory (IceCube). In 1005 days of data we found no significant excess of neutrinos over the background of neutrinos produced in atmospheric air showers from cosmic ray interactions. We derive upper limits on the velocity averaged product of the dark matter self-annihilation cross section and the relative velocity of the dark matter particles ⟹ σ A v⟩. Upper limits are set for dark matter particle candidate masses ranging from 10 GeV up to 1 TeV while considering annihilation through multiple channels. This work sets the most stringent limit on a neutrino signal from dark matter with mass between 10 and 100 GeV, with a limit of 1.18·10-23cm3s-1 for 100 GeV dark matter particles self-annihilating via τ + τ - to neutrinos (assuming the Navarro–Frenk–White dark matter halo profile)
    • 

    corecore