7 research outputs found

    Comparison of Basal Neuropeptide Y and Corticotropin Releasing Factor Levels Between the High Ethanol Drinking C57BL/6J and Low Ethanol Drinking DBA/2J Inbred Mouse Strains

    Get PDF
    Recent genetic and pharmacological evidence indicates that low neuropeptide Y (NPY) levels in brain regions involved with neurobiological responses to ethanol promote increased ethanol consumption. Because of their opposing actions, it has been suggested that NPY and corticotropin releasing factor (CRF) exert a reciprocal regulation on drug self-administration. It has been widely reported that inbred C57BL/6 mice consume significantly higher amounts of ethanol than do DBA/2 mice. Therefore, we used immunohistochemical techniques to determine if basal NPY and/or CRF levels differed in predicted directions between C57BL/6J and DBA/2J mice

    Peripheral and Central Administration of a Selective Neuropeptide Y Y1 Receptor Antagonist Suppresses Ethanol Intake by C57BL/6J Mice

    Get PDF
    Neuropeptide Y (NPY) is a 36–amino acid neuromodulator that is expressed throughout the central nervous system. Recent genetic and pharmacological evidence suggests that the NPY Y1 receptor modulates ethanol intake. To further characterize the role of the Y1 receptor, we examined voluntary ethanol consumption by mice after administration of [(−)-2-[1-(3-chloro-5-isopropyloxycarbonylaminophenyl)ethylamino]-6-[2-(5-ethyl-4-methyl-1,3-tiazol-2-yl)ethyl]-4-morpholinopyridine] (compound A), a novel and selective Y1 receptor antagonist (Y1RA) that acts centrally on brain receptors when administered peripherally

    Peripheral and Central Administration of a Selective Neuropeptide Y Y1 Receptor Antagonist Suppresses Ethanol Intake by C57BL/6J Mice

    No full text
    BACKGROUND: Neuropeptide Y (NPY) is a 36–amino acid neuromodulator that is expressed throughout the central nervous system. Recent genetic and pharmacological evidence suggests that the NPY Y(1) receptor modulates ethanol intake. To further characterize the role of the Y(1) receptor, we examined voluntary ethanol consumption by mice after administration of [(−)-2-[1-(3-chloro-5-isopropyloxycarbonylaminophenyl)ethylamino]-6-[2-(5-ethyl-4-methyl-1,3-tiazol-2-yl)ethyl]-4-morpholinopyridine] (compound A), a novel and selective Y(1) receptor antagonist (Y1RA) that acts centrally on brain receptors when administered peripherally. METHODS: C57BL/6J mice were habituated to drinking a 10% (v/v) ethanol solution by using a two-bottle-choice procedure and were then given an intraperitoneal (ip) injection (5 ml/kg) of the Y1RA (0, 25, 50, or 75 mg/kg). In a second study, mice were given intracerebroventricular infusion of the Y1RA (0, 30, or 100 μg). Finally, we determined whether the Y1RA alters open-field locomotor activity, ethanol-induced sedation (3.8 g/kg, ip), or blood ethanol levels. RESULTS: Relative to control treatment, ip injection (50 and 75 mg/kg) and intracerebroventricular infusion (100 μg) of the Y1RA significantly reduced ethanol consumption and food intake without altering water drinking. However, the Y1RA did not alter open-field locomotor activity, ethanol-induced sedation, or blood ethanol levels. CONCLUSIONS: These data indicate that acute blockade of the NPY Y(1) receptor with a systemically bioavailable NPY Y1RA reduces voluntary ethanol consumption by C57BL/6J mice. These results are consistent with observations that hypothalamic infusion of NPY increases ethanol drinking by rats

    Alcohol and adult hippocampal neurogenesis: Promiscuous drug, wanton effects

    No full text
    corecore