12,843 research outputs found
Recommended from our members
Growing land-sea temperature contrast and the intensification of Arctic cyclones
Cyclones play an important role in the coupled dynamics of the Arctic climate system on a range of timescales. Modelling studies suggest that storminess will increase in the Arctic summer due to the enhanced land-sea thermal contrast along the Arctic coastline, in a region known as the Arctic Frontal Zone (AFZ). However, the climate models used in these studies are poor at reproducing the present-day Arctic summer cyclone climatology and so their projections of Arctic cyclones and related quantities, such as sea ice, may not be reliable. In this study we perform composite analysis of Arctic cyclone statistics using AFZ variability as an analogue for climate change. High AFZ years are characterised both by increased cyclone frequency and dynamical intensity, compared to low years. Importantly, the size of the response in this analogue suggests that GCMs may underestimate the response of Arctic cyclones to climate change, given a similar change in baroclinicity
Myeloid expression of adenosine a2A receptor suppresses T and NK cell responses in the solid tumor microenvironment
High concentrations of adenosine in tumor microenvironments inhibit antitumor cytotoxic lymphocyte responses. Although T cells express inhibitory adenosine A2A receptors (A2AR) that suppress their activation and inhibit immune killing of tumors, a role for myeloid cell A2ARs in suppressing the immune response to tumors has yet to be investigated. In this study, we show that the growth of transplanted syngeneic B16F10 melanoma or Lewis lung carcinoma cells is slowed in Adora2af/f-LysMCre+/- mice, which selectively lack myeloid A2ARs. Reduced melanoma growth is associated with significant increases in MHCII and IL12 expression in tumor-associated macrophages and with >90% reductions in IL10 expression in tumor-associated macrophages, dendritic cells (DC), and Ly6C+ or Ly6G+ myeloid-derived suppressor cells (MDSC). Myeloid deletion of A2ARs significantly increases CD44 expression on tumor-associated T cells and natural killer (NK) cells. Depletion of CD8+ T cells or NK cells in tumor-bearing mice indicates that both cell types initially contribute to slowing melanoma growth in mice lacking myeloid A2A receptors, but tumor suppression mediated by CD8+ T cells is more persistent. Myeloid-selective A2AR deletion significantly reduces lung metastasis of melanomas that express luciferase (for in vivo tracking) and ovalbumin (as a model antigen). Reduced metastasis is associated with increased numbers and activation of NK cells and antigen-specific CD8+ T cells in lung in filtrates. Overall, the findings indicate that myeloid cell A2ARs have direct myelosuppressive effects that indirectly contribute to the suppression of T cells and NK cells in primary and metastatic tumor microenvironments. The results indicate that tumor-associated myeloid cells, including macrophages, DCs, and MDSCs all express immunosuppressive A2ARs that are potential targets of adenosine receptor blockers to enhance immune killing of tumors. ©2014 AACR
Temperature oscillation of a dual compensation chamber loop heat pipe under acceleration conditions
Loop heat pipe has a wide application in the fields of airborne electronics cooling and thermal management. However, the pertinent temperature oscillation of the loop heat pipe could lead to adverse effects on the electronics. In the current study, an ammonia-stainless steel dual compensation chamber loop heat pipe was developed to experimentally investigate the temperature oscillation under different acceleration conditions. The impact of several control parameters such as different heat loads, loading modes, acceleration directions and magnitudes on the operational performance of the loop heat pipe was analyzed in a systematic manner. The heat load applied on the evaporator ranged from 25 W to 300 W. The acceleration magnitude varied from 1 g to 9 g and four different acceleration direction, i.e. configurations A, B, C and D, were taken into account. Two different loading modes were applied with different heat load and acceleration force. Experimental results show that (i) the loop temperature will change and oscillate as the acceleration force was applied under all test conditions. It can be easily found that the temperature oscillation occurred at both heat loads of 250 W and 300 W. (ii) for the case of the first loading mode, periodic temperature oscillation is observed on the liquid line, whereas for the second loading mode, periodic temperature oscillation can be easily appeared on the entire loop. (iii) the loop temperature under both configurations A and B with acceleration of 7 g does not oscillate at heat load of 150 W, 200 W and 250 W when the first loading mode is applied. Especially under configuration B, the acceleration could contribute to repress the temperature oscillation. Under the current heat loads for almost all cases, the temperature oscillation can be observed for configurations A, C and D with acceleration of 5 g. (iv) the amplitude of evaporator at heat load of 300 W under configuration C are 0.6 °C, 0.3 °C, 0.2 °C and 0.3 °C with acceleration of 3 g, 5 g, 7 g and 9 g. The corresponding period is 66 s, 36 s, 34 s and 36 s, respectively
Prediction of the release process of the nitrogen-extinguishant binary mixture considering surface tension
Nitrogen used for pressurization in the extinguisher can be partially dissolved in the fire extinguishing agent. Consequently, the evolution of the dissolved nitrogen has a significant effect on the release behavior of the fire extinguishing agent in a rapid process. In this article, a new model was developed to predict the critical pressure of the nitrogen evolution and the release process of the fire extinguishing agent was described in detail. According to the Peng-Robinson (PR) equation of state and van der Waals mixing rule, the effect of the dissolved nitrogen on the surface tension of the fire extinguishant was analyzed by considering surface phase and fugacity coefficient. A method to calculate the surface tension of the liquid agent dissolved with nitrogen was proposed. The results showed that the proposed model can determine the accurate critical pressure of the evolution of the dissolved nitrogen and further evaluated whether nitrogen escapes. At different initial filling pressure, in addition, the release process of the nitrogen-extinguishant such as CF3I, FC218 (C3F8), HFC125 (C2HF5), and Halon1301 (CF3Br) was well predicted by the fluid release model when taking the surface tension and adiabatic index of the mixture into account. Compared with the previously obtained experimental data, the predictions obtained indicated that the present model can adequately describe the liquid and the gas mixture release stage in the release process of the nitrogen-extinguishant
Ionospheric perturbations in possible association with the 2010 Haiti earthquake, as based on medium-distance subionospheric VLF propagation data
Ionospheric perturbations in possible association with the 2010 Haiti earthquake occurred on 12 January 2010 (with a magnitude of 7.0 and depth of 10 km) are investigated on the basis of subionospheric propagation data from the NAA transmitter on the east coast of the USA to a VLF receiving station in Peru. The local nighttime VLF amplitude data are extensively investigated during the period from the beginning of October 2009 to the end of March 2010, in which the trend (nighttime average amplitude), dispersion and nighttime fluctuation are analysed. It is found that a clear precursory ionosphere perturbation is detected just around New Years day of 2010, about 12 days before the main shock, which is characterised by the simultaneous decrease in the trend and the increases in dispersion and nighttime fluctuation. An additional finding might be the presence of the effect of the Earth's tide one and two months before the main shock, which can only be seen for a huge EQ
Proper Motions of H2O Masers in the Water Fountain Source IRAS 19190+1102
We report on the results of two epochs of Very Long Baseline Array (VLBA)
observations of the 22 GHz water masers toward IRAS 19190+1102. The water maser
emission from this object shows two main arc-shaped formations perpendicular to
their NE-SW separation axis. The arcs are separated by ~280 mas in position,
and are expanding outwards at an angular rate of 2.35 mas/yr. We detect maser
emission at velocities between -53.3 km/s to +78.0 km/s and there is a distinct
velocity pattern where the NE masers are blueshifted and the SW masers are
redshifted. The outflow has a three-dimensional outflow velocity of 99.8 km/s
and a dynamical age of about 59 yr. A group of blueshifted masers not located
along the arcs shows a change in velocity of more than 35 km/s between epochs,
and may be indicative of the formation of a new lobe. These observations show
that IRAS 19190+1102 is a member of the class of "water fountain"'
pre-planetary nebulae displaying bipolar structureComment: Accepted for publication in ApJ, corrected typo
A glassy contribution to the heat capacity of hcp He solids
We model the low-temperature specific heat of solid He in the hexagonal
closed packed structure by invoking two-level tunneling states in addition to
the usual phonon contribution of a Debye crystal for temperatures far below the
Debye temperature, . By introducing a cutoff energy in the
two-level tunneling density of states, we can describe the excess specific heat
observed in solid hcp He, as well as the low-temperature linear term in the
specific heat. Agreement is found with recent measurements of the temperature
behavior of both specific heat and pressure. These results suggest the presence
of a very small fraction, at the parts-per-million (ppm) level, of two-level
tunneling systems in solid He, irrespective of the existence of
supersolidity.Comment: 11 pages, 4 figure
Brueckner Rearrangement Effects in He and He
Rearrangement effects in light hypernuclei are investigated in the framework
of the Brueckner theory. We can estimate without detailed numerical
calculations that the energy of the -core is reduced by more than 2.5
MeV when the adheres to He to form He. Similar
assessment of rearrangement contributions is essential to deduce the strength
of interaction from experimentally observed . The recently observed experimental value of 1 MeV
for the of \hll suggests that the matrix element of
in \hll is around -2 MeV.Comment: 7 pages, to appear in Phys. Rev.
Electrochemistry at nanoscale electrodes : individual single-walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires
Individual nanowires (NWs) and native single-walled carbon nanotubes (SWNTs) can be readily used as well-defined nanoscale electrodes (NSEs) for voltammetric analysis. Here, the simple photolithography-free fabrication of submillimeter long Au, Pt, and Pd NWs, with sub-100 nm heights, by templated electrodeposition onto ultralong flow-aligned SWNTs is demonstrated. Both individual Au NWs and SWNTs are employed as NSEs for electron-transfer (ET) kinetic quantification, using cyclic voltammetry (CV), in conjunction with a microcapillary-based electrochemical method. A small capillary with internal diameter in the range 30â70 ÎŒm, filled with solution containing a redox-active mediator (FcTMA+ ((trimethylammonium)methylferrocene), Fe(CN)64â, or hydrazine) is positioned above the NSE, so that the solution meniscus completes an electrochemical cell. A 3D finite-element model, faithfully reproducing the experimental geometry, is used to both analyze the experimental CVs and derive the rate of heterogeneous ET, using ButlerâVolmer kinetics. For a 70 nm height Au NW, intrinsic rate constants, k0, up to ca. 1 cm sâ1 can be resolved. Using the same experimental configuration the electrochemistry of individual SWNTs can also be accessed. For FcTMA+/2+ electrolysis the simulated ET kinetic parameters yield very fast ET kinetics (k0 > 2 ± 1 cm sâ1). Some deviation between the experimental voltammetry and the idealized model is noted, suggesting that double-layer effects may influence ET at the nanoscale
- âŠ