460 research outputs found

    Change in the distribution of a member of the strand line community: the seaweed fly (Diptera: Coelopidae)

    Get PDF
    1. Coastal organisms are predicted to be particularly susceptible to the impact of global warming. In this study the distribution and relative abundance of two coastal invertebrates, Coelopa frigida (Fabricius) and C. pilipes are investigated. 2. Coelopa pilipes has a more southerly distribution than C. frigida , and prefers a warmer climate. Coelopa pilipes is less resistant to sub-zero temperatures than C. frigida and its northerly distribution is probably limited by cold winter days. 3. The most recent distribution map of C. frigida and C. pilipes in northern Europe was published a decade ago and showed the northerly extent of the distribution of C. pilipes reaching the north coast of mainland Scotland but its complete absence from the Western and Northern Isles. 4. C. pilipes has now spread throughout the Western Isles and the Orkney Islands but is still absent from Shetland. There has also been an increase in the relative frequency of C. pilipes at sites harbouring coelopids on the British mainland. A similar pattern of distribution change along the west coast of Sweden is reported. 5. It is proposed that these changes have occurred primarily as a result of global warming and in particular due to the recent increase in winter temperatures. A number of other indirect effects may have also contributed to these changes, including a probable change in macroalgae distribution. The implications of these changes for the wrack bed ecosystem and at higher trophic levels are considered

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure

    Characterization of halogen-bridged binuclear metal complexes as hybridized two-band materials

    Full text link
    We study the electronic structure of halogen-bridged binuclear metal (MMX) complexes with a two-band Peierls-Hubbard model. Based on a symmetry argument, various density-wave states are derived and characterized. The ground-state phase diagram is drawn within the Hartree-Fock approximation, while the thermal behavior is investigated using a quantum Monte Carlo method. All the calculations conclude that a typical MMX compound Pt_2(CH_3CS_2)_4I should indeed be regarded as a d-p-hybridized two-band material, where the oxidation of the halogen ions must be observed even in the ground state, whereas another MMX family (NH_4)_4[Pt_2(P_2O_5H_2)_4X] may be treated as single-band materials.Comment: 16 pages, 11 figures embedded, to be published in Phys. Rev.

    The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens

    Full text link
    Repeated exposure to cocaine increases the density of dendritic spines on medium spiny neurons in the nucleus accumbens (Acb) and pyramidal cells in the medial prefrontal cortex (mPFC). To determine if this is associated with the development of psychomotor sensitization, rats were given daily i.p. injections of 15 mg/kg of cocaine (or saline) for 8 days, either in their home cage (which failed to induce significant psychomotor sensitization) or in a distinct and relatively novel test cage (which induced robust psychomotor sensitization). Their brains were obtained 2 weeks after the last injection and processed for Golgi–Cox staining. In the Acb core (AcbC) cocaine treatment increased spine density only in the group that developed psychomotor sensitization (i.e. in the Novel but not Home group), and there was a significant positive correlation between the degree of psychomotor sensitization and spine density. In the Acb shell (AcbS) cocaine increased spine density to the same extent in both groups; i.e. independent of psychomotor sensitization. In the mPFC cocaine increased spine density in both groups, but to a significantly greater extent in the Novel group. Furthermore, when rats were treated at Home with a higher dose of cocaine (30 mg/kg), cocaine now induced psychomotor sensitization in this context, and also increased spine density in the AcbC. Thus, the context in which cocaine is experienced influences its ability to reorganize patterns of synaptic connectivity in the Acb and mPFC, and the induction of psychomotor sensitization is associated with structural plasticity in the AcbC and mPFC, but not the AcbS.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73532/1/j.1460-9568.2004.03612.x.pd

    Entanglement, Bell Inequalities and Decoherence in Particle Physics

    Full text link
    We demonstrate the relevance of entanglement, Bell inequalities and decoherence in particle physics. In particular, we study in detail the features of the ``strange'' K0Kˉ0K^0 \bar K^0 system as an example of entangled meson--antimeson systems. The analogies and differences to entangled spin--1/2 or photon systems are worked, the effects of a unitary time evolution of the meson system is demonstrated explicitly. After an introduction we present several types of Bell inequalities and show a remarkable connection to CP violation. We investigate the stability of entangled quantum systems pursuing the question how possible decoherence might arise due to the interaction of the system with its ``environment''. The decoherence is strikingly connected to the entanglement loss of common entanglement measures. Finally, some outlook of the field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids, 42. Internationale Universit\"atswochen f\"ur Theoretische Physik, Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in Physics, Springer Verlag, 45 page

    Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel

    Get PDF
    The aquaporin family of integral membrane proteins is comprised of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically-driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves protein kinase A (PKA) activation, influx of extracellular calcium and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine- 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain oedema

    Large enhancement of deuteron polarization with frequency modulated microwaves

    Get PDF
    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar files in poltar.uu, which also brings cernart.sty and crna12.sty files neede

    Exact Theorems Concerning CP and CPT Violations in C=-1 Entangled State of Pseudoscalar Neutral Mesons

    Full text link
    Neutral pseudoscalar mesons in an entangled or Einstein-Podolsky-Rosen state are routinely produced in phi and B factories. Based on the peculiar properties of an entangled state, we present some general exact theorems about parameters characterizing CP and CPT violations, by using various asymmetries defined for the correlated decays of the two entangled mesons, which are rigorously calculated.Comment: 10 pages, published versio

    Tracking Virus-Specific CD4+ T Cells during and after Acute Hepatitis C Virus Infection

    Get PDF
    CD4+ T cell help is critical in maintaining antiviral immune responses and such help has been shown to be sustained in acute resolving hepatitis C. In contrast, in evolving chronic hepatitis C CD4+ T cell helper responses appear to be absent or short-lived, using functional assays. Here we used a novel HLA-DR1 tetramer containing a highly targeted CD4+ T cell epitope from the hepatitis C virus non-structural protein 4 to track number and phenotype of hepatitis C virus specific CD4+ T cells in a cohort of seven HLA-DR1 positive patients with acute hepatitis C in comparison to patients with chronic or resolved hepatitis C. We observed peptide-specific T cells in all seven patients with acute hepatitis C regardless of outcome at frequencies up to 0.65% of CD4+ T cells. Among patients who transiently controlled virus replication we observed loss of function, and/or physical deletion of tetramer+ CD4+ T cells before viral recrudescence. In some patients with chronic hepatitis C very low numbers of tetramer+ cells were detectable in peripheral blood, compared to robust responses detected in spontaneous resolvers. Importantly we did not observe escape mutations in this key CD4+ T cell epitope in patients with evolving chronic hepatitis C. During acute hepatitis C a CD4+ T cell response against this epitope is readily induced in most, if not all, HLA-DR1+ patients. This antiviral T cell population becomes functionally impaired or is deleted early in the course of disease in those where viremia persists
    • 

    corecore